Parameter Estimation: The Proper Way to Use Bayesian Posterior Processes with Brownian Noise

This paper studies a problem of Bayesian parameter estimation for a sequence of scaled counting processes whose weak limit is a Brownian motion with an unknown drift. The main result of the paper is that the limit of the posterior distribution processes is, in general, not equal to the posterior distribution process of the mentioned Brownian motion with the unknown drift. Instead, it is equal to the posterior distribution process associated with a Brownian motion with the same unknown drift and a different standard deviation coefficient. The difference between the two standard deviation coefficients can be arbitrarily large. The characterization of the limit of the posterior distribution processes is then applied to a family of stopping time problems. We show that the proper way to find asymptotically optimal solutions to stopping time problems w.r.t.~the scaled counting processes is by looking at the limit of the posterior distribution processes rather than by the naive approach of looking at the limit of the scaled counting processes themselves. The difference between the performances can be arbitrarily large.

[1]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[2]  Giuseppe Moscarini,et al.  Job Matching and the Wage Distribution , 2005 .

[3]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[4]  Erhan Bayraktar,et al.  Adaptive Poisson disorder problem , 2006, ArXiv.

[5]  Eilon Solan,et al.  Bandit Problems with Lévy Processes , 2013, Math. Oper. Res..

[6]  S. Sezer On the Wiener disorder problem. , 2010, 1010.4617.

[7]  Optimal speed of detection in generalized Wiener disorder problems , 2001 .

[8]  M. Shubik,et al.  COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 1991 .

[9]  Albert N. Shiryaev,et al.  Optimal Stopping Rules , 1980, International Encyclopedia of Statistical Science.

[10]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[11]  Albert N. Shiryaev,et al.  Solving the Poisson Disorder Problem , 2002 .

[12]  Ward Whitt,et al.  Staffing a Call Center with Uncertain Arrival Rate and Absenteeism , 2006 .

[13]  D. Yao,et al.  Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization , 2001, IEEE Transactions on Automatic Control.

[14]  A. Shiryaev,et al.  On the sequential testing problem for some diffusion processes , 2011 .

[15]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[16]  Peter Secretan Learning , 1965, Mental Health.

[17]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[18]  Sven Rady,et al.  Optimal Experimentation in a Changing Environment , 1997 .

[19]  Donald A. Berry,et al.  Bandit Problems: Sequential Allocation of Experiments. , 1986 .

[20]  M. Zhitlukhin,et al.  A Bayesian sequential testing problem of three hypotheses for Brownian motion , 2011 .

[21]  Patrick Bolton,et al.  Strategic Experimentation: A Revision , 1995 .

[22]  Pavel V. Gapeev The disorder problem for compound Poisson processes with exponential jumps , 2005 .

[23]  David D. Yao,et al.  Fundamentals of Queueing Networks , 2001 .

[24]  Nicholas G. Polson,et al.  Bayes factors for discrete observations from diffusion processes , 1994 .

[25]  G. Peskir,et al.  The Wiener Sequential Testing Problem with Finite Horizon , 2004 .

[26]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[27]  P. Muliere,et al.  Sequential Testing Problems for Lévy Processes , 2013 .

[28]  G. Peskir,et al.  The Wiener disorder problem with finite horizon , 2006 .

[29]  Savas Dayanik,et al.  Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs , 2010, Math. Oper. Res..

[30]  Boyan Jovanovic Job Matching and the Theory of Turnover , 1979, Journal of Political Economy.

[31]  Leonardo Felli,et al.  Job matching, learning and the distribution of surplus , 1994 .