Two-step complete polarization logic Bell-state analysis

The Bell state plays a significant role in the fundamental tests of quantum mechanics, such as the nonlocality of the quantum world. The Bell-state analysis is of vice importance in quantum communication. Existing Bell-state analysis protocols usually focus on the Bell-state encoding in the physical qubit directly. In this paper, we will describe an alternative approach to realize the near complete logic Bell-state analysis for the polarized concatenated Greenberger-Horne-Zeilinger (C-GHZ) state with two logic qubits. We show that the logic Bell-state can be distinguished in two steps with the help of the parity-check measurement (PCM) constructed by the cross-Kerr nonlinearity. This approach can be also used to distinguish arbitrary C-GHZ state with N logic qubits. As both the recent theoretical and experiment work showed that the C-GHZ state has its robust feature in practical noisy environment, this protocol may be useful in future long-distance quantum communication based on the logic-qubit entanglement.

[1]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[2]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[3]  Peter van Loock,et al.  Dynamical entanglement purification using chains of atoms and optical cavities , 2011 .

[4]  Yu-Bo Sheng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2009, 0912.0079.

[5]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[6]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[7]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[8]  Wolfgang Dur,et al.  Effective noise channels for encoded quantum systems , 2013, 1306.1738.

[9]  N. Gisin,et al.  Quantum teleportation with a three-Bell-state analyzer. , 2006 .

[10]  R. Chaves,et al.  Multipartite quantum nonlocality under local decoherence , 2012, 1204.2562.

[11]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[12]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[13]  Wolfgang Dür,et al.  Stability of encoded macroscopic quantum superpositions , 2012 .

[14]  W Dür,et al.  Universal and optimal error thresholds for measurement-based entanglement purification. , 2013, Physical review letters.

[15]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[16]  Ting Gao,et al.  Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales , 2013 .

[17]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[18]  Zhang Yong Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities , 2011 .

[19]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[20]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[21]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[22]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[23]  Ping Xu,et al.  Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions , 2014 .

[24]  W. Munro,et al.  Quantum repeaters using coherent-state communication , 2008, 0806.1153.

[25]  Kae Nemoto,et al.  Quantum error correction via robust probe modes , 2006 .

[26]  Wolfgang Dür,et al.  Robustness of hashing protocols for entanglement purification , 2014 .

[27]  Rafael Chaves,et al.  Robust multipartite quantum correlations without complex encodings , 2012 .

[28]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[29]  Kae Nemoto,et al.  Stabilizer quantum error correction with quantum bus computation , 2007 .

[30]  Christoph Simon,et al.  Two-photon dynamics in coherent Rydberg atomic ensemble. , 2014, Physical review letters.

[31]  ChuanLiang Wang Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system , 2012 .

[32]  N Gisin,et al.  Quantum teleportation with a three-Bell-state analyzer. , 2005, Physical review letters.

[33]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[34]  Aephraim M. Steinberg,et al.  Amplifying single-photon nonlinearity using weak measurements. , 2010, Physical review letters.

[35]  W Dür,et al.  Stable macroscopic quantum superpositions. , 2011, Physical review letters.

[36]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[37]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[38]  Clement Ampadu Limit theorem for Fibonacci anyons in a pentagon underFmoves , 2012 .

[39]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[40]  Seung-Woo Lee,et al.  Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. , 2015, Physical review letters.

[41]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[42]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[43]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[44]  Chengjie Zhu,et al.  Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. , 2011, Optics express.

[45]  L. Vaidman,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[46]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[47]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[48]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[49]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[50]  J. Bergou,et al.  Universal discriminator for completely unknown optical qubits , 2007, 0706.2429.

[51]  Zach DeVito,et al.  Opt , 2017 .

[52]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[53]  Bing He,et al.  Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity , 2009, 0901.3505.

[54]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[55]  Yu-Bo Sheng,et al.  Recyclable amplification protocol for the single-photon entangled state , 2015 .

[56]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[57]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.