Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: Preliminary Results

We describe in this paper a new hybrid approach for mathematical function optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid PSO+GA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The new hybrid PSO +GA method is shown to be superior than the individual evolutionary methods.

[1]  Oscar Castillo,et al.  Human evolutionary model: A new approach to optimization , 2007, Inf. Sci..

[2]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[3]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[6]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[7]  K. S. Tang,et al.  Genetic Algorithms: Concepts and Designs with Disk , 1999 .

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Claus Emmeche,et al.  The garden in the machine: the emerging science of artificial life , 1994 .

[10]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[11]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[12]  Oscar Castillo,et al.  Hierarchical genetic algorithms for topology optimization in fuzzy control systems , 2007, Int. J. Gen. Syst..

[13]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[14]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .