A novel 2-step ALD route to ultra-thin MoS2 films on SiO2 through a surface organometallic intermediate.
暂无分享,去创建一个
D. Rouchon | H. Okuno | E. A. Quadrelli | K. Szeto | F. Martin | O. Renault | L. Veyre | C. Thieuleux | E. Nolot | M. Frégnaux | S. Cadot
[1] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[2] A. Ouerghi,et al. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.
[3] D. Jeong,et al. Wafer-scale growth of MoS2 thin films by atomic layer deposition. , 2016, Nanoscale.
[4] J. F. Conley,et al. Atomic layer deposition of two dimensional MoS2 on 150 mm substrates , 2016 .
[5] Christophe Copéret,et al. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. , 2016, Chemical reviews.
[6] S. Kerdiles,et al. Functionalization of Silica Nanoparticles and Native Silicon Oxide with Tailored Boron-Molecular Precursors for Efficient and Predictive p-Doping of Silicon , 2015 .
[7] Pinshane Y. Huang,et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.
[8] C. Detavernier,et al. Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device , 2015 .
[9] Kazuhiro Yamamoto,et al. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. , 2015, ACS applied materials & interfaces.
[10] D. Tweet,et al. Atomic layer deposition of MoS2 thin films , 2015 .
[11] Zhenyu Jin,et al. Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate. , 2014, Nanoscale.
[12] P. Afanasiev,et al. The influence of MoS2 slab 2D morphology and edge state on the properties of alumina-supported molybdenum sulfide catalysts , 2014 .
[13] Y. Leblebici,et al. MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.
[14] H. Tan,et al. Atomic layer deposition of a MoS₂ film. , 2014, Nanoscale.
[15] D. Tsai,et al. Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.
[16] Oriol López Sánchez,et al. Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.
[17] Xin Wang,et al. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction , 2014 .
[18] Kun Yao,et al. Vapor Phase Growth and Imaging Stacking Order of Bilayer Molybdenum Disulfide , 2014 .
[19] Santanu Das,et al. Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review , 2014 .
[20] Qing Zhang,et al. Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.
[21] Lixia Yuan,et al. Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries , 2014 .
[22] Anupama B. Kaul,et al. Two-dimensional layered materials: Structure, properties, and prospects for device applications , 2014 .
[23] Xiangbo Meng,et al. Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide , 2014 .
[24] F. Zaera. Mechanisms of surface reactions in thin solid film chemical deposition processes , 2013 .
[25] J. Myoung,et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.
[26] A. Kis,et al. Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.
[27] S. George,et al. Growth and Properties of Hybrid Organic‐Inorganic Metalcone Films Using Molecular Layer Deposition Techniques , 2013 .
[28] D. Lafond,et al. Cu nanoparticles on 2D and 3D silica substrates: controlled size and density, and critical size in catalytic silicon nanowire growth , 2013 .
[29] Qing Hua Wang,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.
[30] Yu-Chuan Lin,et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.
[31] Mietek Jaroniec,et al. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.
[32] Lain‐Jong Li,et al. Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.
[33] Z. Yin,et al. Single-layer MoS2 phototransistors. , 2012, ACS nano.
[34] Yimin A. Wu,et al. Spatial control of defect creation in graphene at the nanoscale , 2012, Nature Communications.
[35] B. Radisavljevic,et al. Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.
[36] Changgu Lee,et al. Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.
[37] E. A. Quadrelli,et al. On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis , 2010 .
[38] A. Weimer,et al. Ultra-thin microporous-mesoporous metal oxide films prepared by molecular layer deposition (MLD). , 2009, Chemical communications.
[39] M. Reiche,et al. Atomic Layer Deposition of Antimony Oxide and Antimony Sulfide , 2009 .
[40] P. Power,et al. Metal Amide Chemistry , 2009 .
[41] T. Cundari,et al. Four-coordinate Mo(II) as (silox)2Mo(PMe3)2 and its W(IV) congener (silox)2HW(eta2-CH2PMe2)(PMe3) (silox = tBu3SiO). , 2008, Inorganic Chemistry.
[42] C. Copéret,et al. Grafting of [Mn(CH2tBu)2(tmeda)] on silica and comparison with its reaction with a silsesquioxane. , 2005, Chemistry.
[43] Emily S. Peters,et al. Reactivity of tetrakisdimethylamido-titanium(IV) and -zirconium(IV) with thiols , 2005 .
[44] E. A. Quadrelli,et al. Methane activation by silica-supported Zr(IV) hydrides: the dihydride [(triple bond)SiO)2ZrH2] is much faster than the monohydride [(triple bond)SiO)3ZrH]. , 2004, Chemical communications.
[45] Mikko Ritala,et al. Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.
[46] Esther Kim,et al. Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors , 2002 .
[47] L. T. Zhuravlev. The surface chemistry of amorphous silica. Zhuravlev model , 2000 .
[48] W. Pitschke,et al. Chemical vapour deposition of MoS2 coatings using the precursors MoCl5 and H2S , 1999 .
[49] J. Cheon,et al. Chemical Vapor Deposition of MoS2 and TiS2 Films From the Metal−Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4 , 1997 .
[50] R. Gordon,et al. Low-temperature atmospheric-pressure metal−organic chemical vapor deposition of molybdenum nitride thin films , 1996 .
[51] J. L. Brito,et al. Thermal and reductive decomposition of ammonium thiomolybdates , 1995 .
[52] R. S. Brown,et al. Reaction of a distorted amide with nucleophilic thiolate-containing zwitterions produced from thiolamines. A model for the acylation step in cysteine proteases and transglutaminases , 1991 .
[53] A. Müller,et al. Polysulfide Complexes of Metals , 1988 .
[54] W. K. Miller,et al. Kinetic studies and a molecular orbital interpretation of reactions at bridging sulfur ligands in dimeric molybdenum complexes , 1981 .
[55] T. Okuhara. Hydrogenation of ethylene on a MoS2 catalyst , 1977 .
[56] S. Motojima,et al. Low Temperature Deposition of Metal Nitrides by Thermal Decomposition of Organometallic Compounds , 1975 .
[57] F. Jellinek,et al. Preparation and Crystallinity of Molybdenum and Tungsten Sulfides , 1964 .
[58] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[59] W. Marsden. I and J , 2012 .
[60] Neil Genzlinger. A. and Q , 2006 .
[61] G. Allen,et al. 777. Hydrogen bonding of the thiol group in phosphinodithioic acids , 1957 .