A novel 2-step ALD route to ultra-thin MoS2 films on SiO2 through a surface organometallic intermediate.

The lack of scalable-methods for the growth of 2D MoS2 crystals, an identified emerging material with applications ranging from electronics to energy storage, is a current bottleneck against its large-scale deployment. We report here a two-step ALD route with new organometallic precursors, Mo(NMe2)4 and 1,2-ethanedithiol (HS(CH2)2SH) which consists in the layer-by-layer deposition of an amorphous surface Mo(iv) thiolate at 50 °C, followed by a subsequent annealing at higher temperature leading to ultra-thin MoS2 nanocrystals (∼20 nm-large) in the 1-2 monolayer range. In contrast to the usual high-temperature growth of 2D dichalcogenides, where nucleation is the key parameter to control both thickness and uniformity, our novel two-step ALD approach enables chemical control over these two parameters, the growth of 2D MoS2 crystals upon annealing being ensured by spatial confinement and facilitated by the formation of a buffer oxysulfide interlayer.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  A. Ouerghi,et al.  Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.

[3]  D. Jeong,et al.  Wafer-scale growth of MoS2 thin films by atomic layer deposition. , 2016, Nanoscale.

[4]  J. F. Conley,et al.  Atomic layer deposition of two dimensional MoS2 on 150 mm substrates , 2016 .

[5]  Christophe Copéret,et al.  Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. , 2016, Chemical reviews.

[6]  S. Kerdiles,et al.  Functionalization of Silica Nanoparticles and Native Silicon Oxide with Tailored Boron-Molecular Precursors for Efficient and Predictive p-Doping of Silicon , 2015 .

[7]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[8]  C. Detavernier,et al.  Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device , 2015 .

[9]  Kazuhiro Yamamoto,et al.  Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. , 2015, ACS applied materials & interfaces.

[10]  D. Tweet,et al.  Atomic layer deposition of MoS2 thin films , 2015 .

[11]  Zhenyu Jin,et al.  Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate. , 2014, Nanoscale.

[12]  P. Afanasiev,et al.  The influence of MoS2 slab 2D morphology and edge state on the properties of alumina-supported molybdenum sulfide catalysts , 2014 .

[13]  Y. Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[14]  H. Tan,et al.  Atomic layer deposition of a MoS₂ film. , 2014, Nanoscale.

[15]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[16]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[17]  Xin Wang,et al.  Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction , 2014 .

[18]  Kun Yao,et al.  Vapor Phase Growth and Imaging Stacking Order of Bilayer Molybdenum Disulfide , 2014 .

[19]  Santanu Das,et al.  Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review , 2014 .

[20]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[21]  Lixia Yuan,et al.  Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries , 2014 .

[22]  Anupama B. Kaul,et al.  Two-dimensional layered materials: Structure, properties, and prospects for device applications , 2014 .

[23]  Xiangbo Meng,et al.  Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide , 2014 .

[24]  F. Zaera Mechanisms of surface reactions in thin solid film chemical deposition processes , 2013 .

[25]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[26]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[27]  S. George,et al.  Growth and Properties of Hybrid Organic‐Inorganic Metalcone Films Using Molecular Layer Deposition Techniques , 2013 .

[28]  D. Lafond,et al.  Cu nanoparticles on 2D and 3D silica substrates: controlled size and density, and critical size in catalytic silicon nanowire growth , 2013 .

[29]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[30]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[31]  Mietek Jaroniec,et al.  Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[32]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[33]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[34]  Yimin A. Wu,et al.  Spatial control of defect creation in graphene at the nanoscale , 2012, Nature Communications.

[35]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[36]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[37]  E. A. Quadrelli,et al.  On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis , 2010 .

[38]  A. Weimer,et al.  Ultra-thin microporous-mesoporous metal oxide films prepared by molecular layer deposition (MLD). , 2009, Chemical communications.

[39]  M. Reiche,et al.  Atomic Layer Deposition of Antimony Oxide and Antimony Sulfide , 2009 .

[40]  P. Power,et al.  Metal Amide Chemistry , 2009 .

[41]  T. Cundari,et al.  Four-coordinate Mo(II) as (silox)2Mo(PMe3)2 and its W(IV) congener (silox)2HW(eta2-CH2PMe2)(PMe3) (silox = tBu3SiO). , 2008, Inorganic Chemistry.

[42]  C. Copéret,et al.  Grafting of [Mn(CH2tBu)2(tmeda)] on silica and comparison with its reaction with a silsesquioxane. , 2005, Chemistry.

[43]  Emily S. Peters,et al.  Reactivity of tetrakisdimethylamido-titanium(IV) and -zirconium(IV) with thiols , 2005 .

[44]  E. A. Quadrelli,et al.  Methane activation by silica-supported Zr(IV) hydrides: the dihydride [(triple bond)SiO)2ZrH2] is much faster than the monohydride [(triple bond)SiO)3ZrH]. , 2004, Chemical communications.

[45]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[46]  Esther Kim,et al.  Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors , 2002 .

[47]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[48]  W. Pitschke,et al.  Chemical vapour deposition of MoS2 coatings using the precursors MoCl5 and H2S , 1999 .

[49]  J. Cheon,et al.  Chemical Vapor Deposition of MoS2 and TiS2 Films From the Metal−Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4 , 1997 .

[50]  R. Gordon,et al.  Low-temperature atmospheric-pressure metal−organic chemical vapor deposition of molybdenum nitride thin films , 1996 .

[51]  J. L. Brito,et al.  Thermal and reductive decomposition of ammonium thiomolybdates , 1995 .

[52]  R. S. Brown,et al.  Reaction of a distorted amide with nucleophilic thiolate-containing zwitterions produced from thiolamines. A model for the acylation step in cysteine proteases and transglutaminases , 1991 .

[53]  A. Müller,et al.  Polysulfide Complexes of Metals , 1988 .

[54]  W. K. Miller,et al.  Kinetic studies and a molecular orbital interpretation of reactions at bridging sulfur ligands in dimeric molybdenum complexes , 1981 .

[55]  T. Okuhara Hydrogenation of ethylene on a MoS2 catalyst , 1977 .

[56]  S. Motojima,et al.  Low Temperature Deposition of Metal Nitrides by Thermal Decomposition of Organometallic Compounds , 1975 .

[57]  F. Jellinek,et al.  Preparation and Crystallinity of Molybdenum and Tungsten Sulfides , 1964 .

[58]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[59]  W. Marsden I and J , 2012 .

[60]  Neil Genzlinger A. and Q , 2006 .

[61]  G. Allen,et al.  777. Hydrogen bonding of the thiol group in phosphinodithioic acids , 1957 .