An environmentally friendly, cost effective synthesis of quinoxalines: the influence of microwave reaction conditions

[1]  N. Zhukova,et al.  Progress in Quinoxaline Synthesis (Part 2) , 2013 .

[2]  A. Al‐Mourabit,et al.  Efficient and selective multicomponent oxidative coupling of two different aliphatic primary amines into thioamides by elemental sulfur. , 2012, Organic letters.

[3]  Lihong Hu,et al.  FeCl3 and Morpholine as Efficient Cocatalysts for the One-Step Synthesis of Quinoxalines from α-Hydroxyketones and 1,2-Diamines , 2012 .

[4]  N. Zhukova,et al.  Progress in Quinoxaline Synthesis (Part 1) , 2012 .

[5]  A. Zare,et al.  Silica nanoparticles efficiently catalyzed synthesis of quinolines and quinoxalines , 2012 .

[6]  R. Mahesh,et al.  Citric acid: An efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature , 2011 .

[7]  Abdolreza Rezaeifard,et al.  Easy access to quinoxaline derivatives using alumina as an effective and reusable catalyst under solvent-free conditions , 2011 .

[8]  Mahipal Singh,et al.  Silica-Gel–Catalyzed Efficient Synthesis of Quinoxaline Derivatives Under Solvent-Free Conditions , 2011 .

[9]  Zhan‐Hui Zhang,et al.  Magnetic Fe3O4 Nanoparticles as New, Efficient, and Reusable Catalysts for the Synthesis of Quinoxalines in Water , 2010 .

[10]  Xi-ming Song,et al.  ARTICLES: Microwave Assisted Synthesis of a New Triplet Iridium(III) Pyrazine Complex , 2010 .

[11]  M. J. Collins,et al.  Future trends in microwave synthesis. , 2010, Future medicinal chemistry.

[12]  R. Robinson,et al.  Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions , 2009, Beilstein journal of organic chemistry.

[13]  K. Niknam,et al.  Silica Bonded S-Sulfonic Acid: A Recyclable Catalyst for the Synthesis of Quinoxalines at Room Temperature , 2009, Molecules.

[14]  Richard J. Fitzmaurice,et al.  Microwave enhanced synthesis , 2009 .

[15]  Wei Zhang,et al.  Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives , 2008 .

[16]  K. S. Shankar,et al.  Bismuth(III)-Catalyzed RapidSynthesis of 2,3-Disubstituted Quinoxalines in Water , 2008 .

[17]  R. Varma,et al.  Microwave-assisted organic synthesis and transformations using benign reaction media. , 2008, Accounts of chemical research.

[18]  C. Cho,et al.  A new ruthenium-catalyzed approach for quinoxalines from o-phenylenediamines and vicinal-diols , 2006 .

[19]  D. Shinde,et al.  Mercuric Iodide (HgI 2 ) as an Oxidizing Agent for the Synthesis of Quinoxaline , 2006 .

[20]  N. N. Pesyan,et al.  Alumina and Silica Oxides as Catalysts for the Oxidation of Benzoins to Benzils under Solvent-free Conditions , 2005, Molecules.

[21]  Richard J. K. Taylor,et al.  Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies. , 2005, Accounts of chemical research.

[22]  G. Mills,et al.  The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells , 2005, British Journal of Cancer.

[23]  K. Park,et al.  Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. , 2005, Chemical communications.

[24]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[25]  Enrique Casado,et al.  PI3K/Akt signalling pathway and cancer. , 2004, Cancer treatment reviews.

[26]  C. D. Wilfred,et al.  Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. , 2004, Organic & biomolecular chemistry.

[27]  W. Dehaen,et al.  The effect of pressure on microwave-enhanced Diels-Alder reactions. A case study. , 2004, Organic & biomolecular chemistry.

[28]  R. Reynolds,et al.  Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. , 2002, Journal of medicinal chemistry.

[29]  C. Kappe,et al.  Microwave-enhanced reactions under open and closed vessel conditions. A case study , 2002 .

[30]  J. Tierney,et al.  Microwave assisted organic synthesis-a review , 2001 .

[31]  M. Nieuwenhuyzen,et al.  Enantiopure N-protected α-amino glyoxals 1. Synthesis from α-amino acids and some condensation reactions with amines , 2000 .

[32]  Rajender S. Varma,et al.  Solvent-free organic syntheses. using supported reagents and microwave irradiation , 1999 .

[33]  G. Mcmahon,et al.  Tyrphostins. 5. Potent inhibitors of platelet-derived growth factor receptor tyrosine kinase: structure-activity relationships in quinoxalines, quinolines, and indole tyrphostins. , 1996, Journal of medicinal chemistry.

[34]  E. Arnold,et al.  Selective pressure of a quinoxaline nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on HIV-1 replication results in the emergence of nucleoside RT-inhibitor-specific (RT Leu-74-->Val or Ile and Val-75-->Leu or Ile) HIV-1 mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Makino,et al.  Regent progress in the quinoxaline chemistry. Synthesis and biological activity , 1988 .

[36]  D. Norbeck,et al.  Application of the Swern oxidation to the manipulation of highly reactive carbonyl compounds , 1985 .

[37]  S. Carter,et al.  The integration of chemotherapy into a combined modality approach for cancer treatment. VI. Pancreatic adenocarcinoma. , 1975, Cancer treatment reviews.