High quality factor metasurfaces for two-dimensional wavefront manipulation

The strong interaction of light with micro- and nanostructures plays a critical role in optical sensing, nonlinear optics, active optical devices, and quantum optics. However, for wavefront shaping, the required local control over light at a subwavelength scale limits this interaction, typically leading to low-quality-factor optical devices. Here, we demonstrate an avenue towards high-quality-factor wavefront shaping in two spatial dimensions based on all-dielectric Huygens metasurfaces by leveraging higher-order Mie resonances. We design and experimentally realize transmissive band stop filters, beam deflectors and radial lenses with measured quality factors in the range of 202-1475 at near-infrared wavelengths. The excited optical mode and resulting wavefront control are both local, allowing versatile operation with finite apertures and oblique illumination. Our results represent an improvement in quality factor by nearly two orders of magnitude over previous localized mode designs, and provide a design approach for a new class of compact optical devices.

[1]  M. Chekhova,et al.  Resonant metasurfaces for generating complex quantum states , 2022, Science.

[2]  P. Chavel,et al.  Fundamental Limitations of Huygens’ Metasurfaces for Optical Beam Shaping , 2020, Laser & Photonics Reviews.

[3]  J. Dionne,et al.  High-Q nanophotonics: sculpting wavefronts with slow light , 2020, Frontiers in Optics and Photonics.

[4]  K. Ha,et al.  All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications , 2020, Nature Nanotechnology.

[5]  N. Yu,et al.  Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces , 2020, Light, science & applications.

[6]  J. Dionne,et al.  High quality factor phase gradient metasurfaces , 2020, Nature Nanotechnology.

[7]  Régis Duvigneau,et al.  Numerical Optimization Methods for Metasurfaces , 2020, Laser & Photonics Reviews.

[8]  M. Goldflam,et al.  High Quality Factor Toroidal Resonances in Dielectric Metasurfaces , 2020 .

[9]  J. Dionne,et al.  Dynamic focusing with high-quality-factor metalenses. , 2020, Nano letters.

[10]  N. Yu,et al.  Multifunctional Nonlocal Metasurfaces. , 2020, Physical review letters.

[11]  Sergey Kruk,et al.  Subwavelength dielectric resonators for nonlinear nanophotonics , 2020, Science.

[12]  Claudio U. Hail,et al.  A Plasmonic Painter's Method of Color Mixing for a Continuous Red-Green-Blue (RGB) Palette. , 2019, ACS nano.

[13]  Wen-Hui Cheng,et al.  Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces , 2019, Nature Communications.

[14]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[15]  Ki Tae Nam,et al.  Outfitting Next Generation Displays with Optical Metasurfaces , 2018, ACS Photonics.

[16]  Yuan Hsing Fu,et al.  Directional lasing in resonant semiconductor nanoantenna arrays , 2018, Nature Nanotechnology.

[17]  T. Kippenberg,et al.  Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins , 2018, Optica.

[18]  Liyi Hsu,et al.  Local phase method for designing and optimizing metasurface devices. , 2017, Optics express.

[19]  Yuri S. Kivshar,et al.  Angle-selective all-dielectric Huygens’ metasurfaces , 2017 .

[20]  A. Alú,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017, 1706.07563.

[21]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[22]  C. Rockstuhl,et al.  An electromagnetic multipole expansion beyond the long-wavelength approximation , 2017, 1701.00755.

[23]  M. Sinclair,et al.  Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces , 2016, 1607.06469.

[24]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[25]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[26]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[27]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[28]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[29]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[30]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[31]  Nikolay I. Zheludev,et al.  Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials , 2014 .

[32]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[33]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[34]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[35]  K. Vahala,et al.  Direct imaging of tunneling from a potential well. , 2009, Optics express.

[36]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[37]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[38]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[39]  B. Hecht,et al.  Principles of Nano-Optics: Theoretical foundations , 2006 .

[40]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[41]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[42]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[43]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[44]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[45]  M. Gorodetsky,et al.  Ultimate Q of optical microsphere resonators. , 1996, Optics letters.

[46]  S. S. Wang,et al.  Theory and applications of guided-mode resonance filters. , 1993, Applied optics.