Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient

[1]  Nicanor Z. Saliendra,et al.  Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis , 1995, Planta.

[2]  J. A. Jarbeau,et al.  The mechanism of water‐stress‐induced embolism in two species of chaparral shrubs , 1995 .

[3]  John S. Sperry,et al.  Intra‐ and inter‐plant variation in xylem cavitation in Betula occidentalis , 1994 .

[4]  John S. Sperry,et al.  Xylem Embolism in Ring‐Porous, Diffuse‐Porous, and Coniferous Trees of Northern Utah and Interior Alaska , 1994 .

[5]  Hervé Cochard,et al.  Drought‐induced leaf shedding in walnut: evidence for vulnerability segmentation , 1993 .

[6]  F. Meinzer,et al.  Stomatal control of transpiration. , 1993, Trends in ecology & evolution.

[7]  J. Sperry,et al.  The Effect of Reduced Hydraulic Conductance on Stomatal Conductance and Xylem Cavitation , 1993 .

[8]  M. Tyree,et al.  Use of positive pressures to establish vulnerability curves : further support for the air-seeding hypothesis and implications for pressure-volume analysis. , 1992, Plant physiology.

[9]  J. Sperry,et al.  Pit Membrane Degradation and Air-Embolism Formation in Ageing Xylem Vessels of Populus tremuloides Michx , 1991 .

[10]  Hamlyn G. Jones,et al.  Stomatal control of xylem embolism , 1991 .

[11]  D. McDermitt Sources of error in the estimation of stomatal conductance and transpiration from porometer data. , 1990 .

[12]  Melvin T. Tyree,et al.  Water‐stress‐induced xylem embolism in three species of conifers , 1990 .

[13]  F. Meinzer,et al.  Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity* , 1990 .

[14]  J. Sperry,et al.  Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? : answers from a model. , 1988, Plant physiology.

[15]  M. Tyree,et al.  Water stress induced cavitation and embolism in some woody plants , 1986 .

[16]  T. Hinckley,et al.  A Comparison of Pressure-Volume Curve Data Analysis Techniques , 1985 .

[17]  M. Zimmermann Xylem Structure and the Ascent of Sap , 1983, Springer Series in Wood Science.

[18]  S. Davis,et al.  Biophysical Perspectives of Xylem Evolution: is there a Tradeoff of Hydraulic Efficiency for Vulnerability to Dysfunction? , 1994 .

[19]  N. Breda,et al.  Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q pubescens Willd, Q robur L) , 1992 .

[20]  Hamlyn G. Jones,et al.  Physiological Aspects of the Control of Water Status in Horticultural Crops , 1990 .

[21]  Melvin T. Tyree,et al.  A method for measuring hydraulic conductivity and embolism in xylem , 1988 .

[22]  J. Sperry,et al.  Relationship of Xylem Embolism to Xylem Pressure Potential, Stomatal Closure, and Shoot Morphology in the Palm Rhapis excelsa. , 1986, Plant physiology.

[23]  M. Hipkins,et al.  Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation , 1985 .

[24]  J. Morgan,et al.  OSMOREGULATION AND WATER STRESS IN HIGHER PLANTS , 1984 .

[25]  M. Zimmermann,et al.  VESSEL-LENGTH DISTRIBUTION IN BRANCHES, STEM AND ROOTS OF ACER RUBRUM L. , 1982 .

[26]  Neil C. Turner,et al.  Turgor maintenance by osmotic adjustment: a review and evaluation. , 1980 .

[27]  Gary A. Ritchie,et al.  The Pressure Chamber as an Instrument for Ecological Research , 1975 .