Spatially resolved physical conditions of molecular gas and potential star formation tracers in M 83, revealed by the Herschel SPIRE FTS

We investigate the physical properties of the molecular and ionized gas, and their relationship to the star formation and dust properties in M 83, based on submillimeter imaging spectroscopy from within the central 3.5′ (~4 kpc in diameter) around the starburst nucleus. The observations use the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel Space Observatory. The newly observed spectral lines include [CI] 370 μm, [CI] 609 μm, [NII] 205 μm, and CO transitions from J = 4−3 to J = 13−12. Combined with previously observed J = 1−0 to J = 3−2 transitions, the CO spectral line energy distributions are translated to spatially resolved physical parameters, column density of CO, N(CO), and molecular gas thermal pressure, Pth, with a non-local thermal equilibrium (non-LTE) radiative transfer model, RADEX. Our results show that there is a relationship between the spatially resolved intensities of [NII] 205 μm and the surface density of the star formation rate (SFR), ΣSFR. This relation, when compared to integrated properties of ultra-luminous infrared galaxies (ULIRGs), exhibits a different slope, because the [NII] 205 μm distribution is more extended than the SFR. The spatially resolved [CI] 370 μm, on the other hand, shows a generally linear relationship with ΣSFR and can potentially be a good SFR tracer. Compared with the dust properties derived from broad-band images, we find a positive trend between the emissivity of CO in the J = 1−0 transition with the average intensity of interstellar radiation field (ISRF), ⟨ U ⟩. This trend implies a decrease in the CO-to-H2 conversion factor, XCO, when ⟨ U ⟩ increases. We estimate the gas-to-dust mass ratios to be 77 ± 33 within the central 2 kpc and 93 ± 19 within the central 4 kpc of M 83, which implies a Galactic dust-to-metal mass ratio within the observed region of M 83. The estimated gas-depletion time for the M 83 nucleus is 1.13 ± 0.6 Gyr, which is shorter than the values for nearby spiral galaxies found in the literature (~2.35 Gyr), most likely due to the young nuclear starbursts. A linear relationship between Pth and the radiation pressure generated by ⟨ U ⟩, Prad, is found to be Pth ≈ 30 Prad, which signals that the ISRF alone is insufficient to sustain the observed CO transitions. The spatial distribution of Pth reveals a pressure gradient, which coincides with the observed propagationof starburst activities and the alignment of (possibly background) radio sources. We discover that the off-centered (from the optical nucleus) peak of the molecular gas volume density coincides well with a minimum in the relative aromatic feature strength, indicating a possible destruction of their carriers. We conclude that the observed CO transitions are most likely associated with mechanical heating processes that are directly or indirectly related to very recent nuclear starbursts.

[1]  A. Evans,et al.  WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES , 2014, 1405.0313.

[2]  P. P. van der Werf,et al.  SHOCK EXCITED MOLECULES IN NGC 1266: ULIRG CONDITIONS AT THE CENTER OF A BULGE-DOMINATED GALAXY , 2013, 1311.3993.

[3]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[4]  Marc Ferlet,et al.  Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer , 2013, 1306.5780.

[5]  B. Swinyard,et al.  Beam profile for the Herschel-SPIRE Fourier transform spectrometer. , 2013, Applied optics.

[6]  C. Kramer,et al.  THE PLATEAU DE BURE + 30 m ARCSECOND WHIRLPOOL SURVEY REVEALS A THICK DISK OF DIFFUSE MOLECULAR GAS IN THE M51 GALAXY , 2013, 1304.1396.

[7]  J. Kamenetzky,et al.  HERSCHEL/SPIRE SUBMILLIMETER SPECTRA OF LOCAL ACTIVE GALAXIES, , 2013, 1303.3511.

[8]  A Herschel Survey of the [N II] 205 μm Line in Local Luminous Infrared Galaxies: The [N II] 205 μm Emission as a Star Formation Rate Indicator , 2013, 1301.7318.

[9]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[10]  H. Rix,et al.  MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES , 2013, 1301.2328.

[11]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[12]  K. Sheth,et al.  EXTENDING THE NEARBY GALAXY HERITAGE WITH WISE: FIRST RESULTS FROM THE WISE ENHANCED RESOLUTION GALAXY ATLAS , 2012, 1210.3628.

[13]  Christine D. Wilson,et al.  SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER , 2012, 1208.6132.

[14]  C. Kramer,et al.  Submillimeter line emission from LMC 30 Doradus: The impact of a starburst on a low-metallicity environment , 2012, 1206.4051.

[15]  P. Hennebelle,et al.  UV-driven chemistry in simulations of the interstellar medium. I. Post-processed chemistry with the Meudon PDR code , 2012, 1205.5689.

[16]  Laboratoire d'Astrophysique de Marseille,et al.  HERSCHEL-SPIRE IMAGING SPECTROSCOPY OF MOLECULAR GAS IN M82 , 2012, 1205.0006.

[17]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[18]  S. Madden,et al.  MIPS 24–160 μm photometry for the Herschel-SPIRE Local Galaxies Guaranteed Time Programs , 2012, 1202.4629.

[19]  P. P. van der Werf,et al.  THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE Xco FACTOR , 2012, 1202.1803.

[20]  M. Sauvage,et al.  The Dust & Gas Properties of M83 , 2012, 1201.2178.

[21]  P. Panuzzo,et al.  Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud , 2011, 1110.1260.

[22]  Benjamin D. Johnson,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS , 2011, 1108.2837.

[23]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[24]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[25]  C. Kramer,et al.  A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES , 2011, 1105.4605.

[26]  S. Glover,et al.  Is molecular gas necessary for star formation , 2011, 1105.3073.

[27]  E. Ostriker,et al.  The CO-H2 Conversion Factor in Disc Galaxies and Mergers , 2011, 1104.4118.

[28]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[29]  Erick T. Young,et al.  LARGE-SCALE SHOCK-IONIZED AND PHOTOIONIZED GAS IN M83: THE IMPACT OF STAR FORMATION , 2011, 1102.2444.

[30]  E. Brinks,et al.  A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES , 2011, 1102.1720.

[31]  R. Kraft,et al.  MARKARIAN 6: SHOCKING THE ENVIRONMENT OF AN INTERMEDIATE SEYFERT , 2011, 1101.6000.

[32]  D. Hogg,et al.  THE AROMATIC FEATURES IN VERY FAINT DWARF GALAXIES , 2009, 0907.1783.

[33]  THE MISSING GOLIATH'S SLINGSHOT: MASSIVE BLACK HOLE RECOIL AT M83 , 2010 .

[34]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[35]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[36]  M. Sauvage,et al.  Probing the molecular interstellar medium of M82 with Herschel-SPIRE spectroscopy ? , 2010, 1005.1877.

[37]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[38]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[39]  Jean-Luc Starck,et al.  FERMI OBSERVATIONS OF CASSIOPEIA AND CEPHEUS: DIFFUSE GAMMA-RAY EMISSION IN THE OUTER GALAXY , 2009, 0912.3618.

[40]  M. Dopita,et al.  SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2010 .

[41]  T. Sawada,et al.  ASTE CO (3–2) MAPPING TOWARD THE WHOLE OPTICAL DISK OF M 83: PROPERTIES OF INTER-ARM GIANT MOLECULAR-CLOUD ASSOCIATIONS , 2009, 0910.2866.

[42]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[43]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[44]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[45]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[46]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[47]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[48]  D. Calzetti,et al.  SPITZER OBSERVATIONS OF STAR FORMATION IN THE EXTREME OUTER DISK OF M83 (NGC5236) , 2008, 0804.3632.

[49]  G. Rieke,et al.  The Behavior of the Aromatic Features in M101 H II Regions: Evidence for Dust Processing , 2008, 0804.3223.

[50]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[51]  D. Calzetti,et al.  Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law , 2007, 0708.0922.

[52]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[53]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[54]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[55]  M. Gerin,et al.  A survey of submillimeter C and CO lines in nearby galaxies , 2006, astro-ph/0611340.

[56]  R. Citron,et al.  Spitzer Observations of M83 and the Hot Star, H II Region Connection , 2006, Proceedings of the International Astronomical Union.

[57]  J. Cowan,et al.  A Study of Compact Radio Sources in Nearby Face-on Spiral Galaxies. I. Long-Term Evolution of M83 , 2006, astro-ph/0603850.

[58]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[59]  M. Sauvage,et al.  ISM properties in low-metallicity environments I. mid-infrared spectra of dwarf galaxies , 2005, astro-ph/0510086.

[60]  P. Jankowski,et al.  A new ab initio interaction energy surface and high-resolution spectra of the H2-CO van der Waals complex. , 2005, The Journal of chemical physics.

[61]  Chile,et al.  Dissecting the spiral galaxy M 83: mid-infrared emission and comparison with other tracers of star formation , 2005, astro-ph/0508027.

[62]  C. Kramer,et al.  Photon dominated regions in the spiral arms of M 83 and M 51 , 2005, astro-ph/0505627.

[63]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[64]  A. Jones,et al.  ISM properties in low-metallicity environments. III. The dust spectral energy distributions of II Zw 40, He 2-10 and NGC 1140 , 2005, astro-ph/0501632.

[65]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[66]  D. Schiminovich,et al.  Extinction Radial Profiles of M83 from GALEX Ultraviolet Imaging , 2004, astro-ph/0411375.

[67]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[68]  D. Iono,et al.  Molecular Gas around the Double Nucleus in M83 , 2004, astro-ph/0403145.

[69]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[70]  Daniela Calzetti,et al.  The Ionized Gas in Local Starburst Galaxies: Global and Small-Scale Feedback from Star Formation , 2003, astro-ph/0312385.

[71]  Space Telescope Sceince Institute,et al.  Molecular gas in the galaxy M 83: I. The molecular gas distribution , 2003, astro-ph/0309787.

[72]  R. S. Wu,et al.  Properties of discrete X-ray sources in the starburst spiral galaxy M 83 , 2003, astro-ph/0307217.

[73]  Abhijit Saha,et al.  The Cepheid Distance to NGC 5236 (M83) with the ESO Very Large Telescope , 2003 .

[74]  S. C. Madden,et al.  ISM properties in low-metallicity environments II. The dust spectral energy distribution of NGC 1569 , 2003, astro-ph/0306192.

[75]  A. Stark,et al.  The AST/RO Survey of the Galactic Center Region. I. The Inner 3 Degrees , 2002, astro-ph/0211025.

[76]  Robert N. Martin,et al.  CO in the Disk of the Barred Spiral Galaxy M83: CO (1-0), CO (2-1), and Neutral Gas , 2002 .

[77]  F. Bresolin,et al.  Optical Spectroscopy of Metal-rich H II Regions and Circumnuclear Hot Spots in M83 and NGC 3351 , 2002, astro-ph/0202383.

[78]  Kinwah Wu,et al.  X-ray sources in the starburst spiral galaxy M 83 - Nuclear region and discrete source population , 2002, astro-ph/0201059.

[79]  F. Israel,et al.  Neutral atomic carbon in centers of galaxies , 2001, astro-ph/0112187.

[80]  G. Gavazzi,et al.  Molecular gas in normal late-type galaxies ? , 2002 .

[81]  D. Calzetti,et al.  Young Clusters in the Nuclear Starburst of M83 , 2001, astro-ph/0109076.

[82]  G. Helou,et al.  Multiwavelength Observations of the Low-Metallicity Blue Compact Dwarf Galaxy SBS 0335−052 , 2001, astro-ph/0107108.

[83]  F. Israel,et al.  CI and CO in the spiral galaxies NGC 6946 and M 83 , 2001, astro-ph/0104196.

[84]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[85]  M. Gerin,et al.  Atomic Carbon in Galaxies , 1999, astro-ph/0003252.

[86]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[87]  H. Kamaya Mass Condensation on Proto-Globular Clusters of the Two-Component Protogalaxy , 1999 .

[88]  P. Maloney The impact of star formation and active nuclei on the interstellar medium in ultraluminous infrared galaxies , 1999, astro-ph/9903275.

[89]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[90]  D. Elmegreen,et al.  Discovery of a Double Circumnuclear Ring and Minibar in the Starburst Galaxy M83 , 1998 .

[91]  Christine D. Wilson,et al.  The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and C I , 1998, astro-ph/9803230.

[92]  M. Dopita,et al.  Spectral Signatures of Fast Shocks. I. Low-Density Model Grid , 1996 .

[93]  T. Geballe,et al.  Detection of absorption by H2 in molecular clouds: A direct measurement of the H2:CO ratio , 1994 .

[94]  Jr.,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[95]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[96]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[97]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[98]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[99]  A. Stark,et al.  Catalog of CO radial velocities toward galactic H II regions , 1982 .

[100]  G. Shields,et al.  M83 II: Spectral characteristics and chemical abundances of H II regions , 1980 .

[101]  H. Wootten,et al.  Star formation in the bright-rimmed molecular cloud IC 1848 A , 1978 .

[102]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[103]  W. Lassell Remarks of the Astronomer Royal and Mr. De La Rue on a proposed New Telescope , 1857 .