Block Krylov–Schur method for large symmetric eigenvalue problems

Stewart’s Krylov–Schur algorithm offers two advantages over Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors, the second is the avoidance of the potential forward instability of the QR algorithm. In this paper we develop a block version of the Krylov–Schur algorithm for symmetric eigenproblems. Details of this block algorithm are discussed, including how to handle rank deficient cases and how to use varying block sizes. Numerical results on the efficiency of the block Krylov–Schur method are reported.

[1]  Roger B. Sidje,et al.  Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems , 1999, Numerical Algorithms.

[2]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[3]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[4]  C. Paige,et al.  Implicit shifting in the QR related algorithms , 1991 .

[5]  Beresford N. Parlett,et al.  The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .

[6]  B. Parlett,et al.  Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..

[7]  Yousef Saad,et al.  Electronic Structure of Clusters and Nanocrystals , 2004 .

[8]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[9]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[10]  Danny C. Sorensen,et al.  Deflation for Implicitly Restarted Arnoldi Methods , 1998 .

[11]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[12]  Yunkai Zhou,et al.  A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue problems , 2010, J. Comput. Phys..

[13]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[14]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .

[15]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[16]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[17]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[18]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[19]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[20]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[21]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[24]  David S. Watkins,et al.  Forward Stability and Transmission of Shifts in the QR Algorithm , 1995, SIAM J. Matrix Anal. Appl..

[25]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[26]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue , 2007, SIAM J. Sci. Comput..

[27]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[28]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems Under Limited Memory. Part II: Seeking Many Eigenvalues , 2007, SIAM J. Sci. Comput..

[29]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[30]  M. Sadkane A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .

[31]  Lothar Reichel,et al.  Algorithm 827: irbleigs: A MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix , 2003, TOMS.

[32]  Lothar Reichel,et al.  IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..

[33]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[34]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[35]  Hua,et al.  PRECONDITIONING BLOCK LANCZOS ALGORITHM FOR SOLVING SYMMETRIC EIGENVALUE PROBLEMS , 2000 .

[36]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[37]  Qiang Ye,et al.  An adaptive block Lanczos algorithm , 1996, Numerical Algorithms.

[38]  Christian H. Bischof,et al.  Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.