Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions

We study positive solutions to (singular) boundary value problems of the form: \begin{document}$\left\{ \begin{align} & -\left( {{\varphi }_{p}}(u') \right)'=\lambda h(t)\frac{f(u)}{{{u}^{\alpha }}},~\ \ t\in (0,1),~~ \\ & u'(1)+c(u(1))u(1)=0,~ \\ & u(0)=0, \\ \end{align} \right.$ \end{document} where \begin{document}$\varphi_p(u): = |u|^{p-2}u$\end{document} with \begin{document}$p>1$\end{document} is the \begin{document}$p$\end{document} -Laplacian operator of \begin{document}$u$\end{document} , \begin{document}$λ>0$\end{document} , \begin{document}$0≤α , \begin{document}$c:[0,∞)\rightarrow (0,∞)$\end{document} is continuous and \begin{document}$h:(0,1)\rightarrow (0,∞)$\end{document} is continuous and integrable. We assume that \begin{document}$f∈ C[0,∞)$\end{document} is such that \begin{document}$f(0) , \begin{document}$\lim_{s\rightarrow ∞}f(s) = ∞$\end{document} and \begin{document}$\frac{f(s)}{s^{α}}$\end{document} has a \begin{document}$p$\end{document} -sublinear growth at infinity, namely, \begin{document}$\lim_{s \rightarrow ∞}\frac{f(s)}{s^{p-1+α}} = 0$\end{document} . We will discuss nonexistence results for \begin{document}$λ≈ 0$\end{document} , and existence and uniqueness results for \begin{document}$λ \gg 1$\end{document} . We establish the existence result by a method of sub-supersolutions and the uniqueness result by establishing growth estimates for solutions.

[1]  Eun Kyoung Lee,et al.  Positive radial solutions to classes of singular problems on the exterior domain of a ball , 2016 .

[2]  M. Ramaswamy,et al.  Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball , 2015 .

[3]  Eun Kyoung Lee,et al.  POSITIVE RADIAL SOLUTIONS FOR ELLIPTIC EQUATIONS ON EXTERIOR DOMAINS WITH NONLINEAR BOUNDARY CONDITIONS , 2014 .

[4]  Eun Kyoung Lee,et al.  Population models with diffusion, strong Allee effect, and nonlinear boundary conditions , 2011 .

[5]  G. M. Makhviladze,et al.  The Mathematical Theory of Combustion and Explosions , 2011 .

[6]  D. Hai Uniqueness of positive solutions for a class of quasilinear problems , 2008 .

[7]  C. Cosner,et al.  Density Dependent Behavior at Habitat Boundaries and the Allee Effect , 2007, Bulletin of mathematical biology.

[8]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[9]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[10]  Manuel del Pino,et al.  A homotopic deformation along p of a Leray-Schauder degree result and existence for (¦u′¦p − 2u′)′ + ƒ(t, u) = 0, u(0) = u(T) = 0, p > 1 , 1989 .

[11]  H. Amann Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces , 1976 .

[12]  B. Son,et al.  A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball , 2017 .

[13]  Lakshmi Sankar Kalappattil Classes of singular nonlinear eigenvalue problems with semipositone structure , 2013 .

[14]  M. Pino,et al.  A Homotopic Deformation along p of a Leray-Schauder Degree Result and Existence for ( lu ’ y-* U ’ ) , 2003 .

[15]  P. Drábek Topological and variational methods for nonlinear boundary value problems : 20th Seminar in Partial Differential Equations , 1997 .

[16]  D. A. Frank-Kamenet︠s︡kiĭ Diffusion and heat transfer in chemical kinetics , 1969 .

[17]  N. N. Semenov,et al.  Chemical Kinetics and Chain Reactions , 1936, Nature.