Parallel Computation of the Euclidean Distance Transform on the Mesh of Trees and the Hypercube Computer

Abstract Thestance transformis an operation that converts an image consisting of black and white pixels to an image where each pixel has a value or coordinate that represents the distance or location to the nearest black pixel. It is a basic operation in image processing and computer vision fields, used for expanding, shrinking, thinning, segmentation, clustering, computing shape, object reconstruction, etc. There are manyapproximateEuclidean distance transform algorithms in the literature, but finding the distance transform with respect to the Euclidean metric is rather time consuming. So, it is important to increase the computing speed. The parallel algorithms discussed are for the computation of exactEuclidean distance transformfor all pixels with respect to black pixels in anN×Nbinary image. The object of this paper is to develop the time-optimal algorithms.O(logN) time-optimal algorithms are proposed for both mesh of trees and hypercube computer. The number of processors used to solve this problem for the former isN×N×N/logNand that for the latter isN2.5, respectively. A generalized algorithm is also proposed for a reduced three-dimensional mesh of trees and it can be computed inO(mlogN) time usingN×N×N/mlogNprocessors, wheremis a constant and 1 ≤m≤ N /logN. Compared to the previous result, the time complexity of the generalized algorithm is inversely proportional to the number of processors used by a factor ofmtimes.

[1]  David W. Paglieroni,et al.  Distance transforms: Properties and machine vision applications , 1992, CVGIP Graph. Model. Image Process..

[2]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Farzin Mokhtarian,et al.  Evolution Properties Of Space Curves , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[4]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[5]  Ling Chen,et al.  A Fast Algorithm for Euclidean Distance Maps of a 2-D Binary Image , 1994, Inf. Process. Lett..

[6]  James L Stansfield,et al.  Conclusions from the Commodity Expert Project , 1980 .

[7]  Herbert Freeman,et al.  Computer Processing of Line-Drawing Images , 1974, CSUR.

[8]  Ling Chen,et al.  An Efficient Algorithm for Complete Euclidean Distance Transform on Mesh-Connected SIMD , 1995, Parallel Comput..

[9]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[10]  Sartaj Sahni,et al.  Data broadcasting in SIMD computers , 1981, IEEE Transactions on Computers.

[11]  Martin A. Fischler,et al.  An iconic transform for sketch completion and shape abstraction , 1980 .

[12]  Denis Laurendeau,et al.  A General Surface Approach to the Integration of a Set of Range Views , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[14]  Otfried Schwarzkopf,et al.  Parallel computation of disease transforms , 1991 .

[15]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[16]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.

[17]  Benjamin B. Kimia,et al.  Deblurring Gaussian blur , 2015, Comput. Vis. Graph. Image Process..

[18]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[22]  S. N. Maheshwari,et al.  Efficient VLSI Networks for Parallel Processing Based on Orthogonal Trees , 1983, IEEE Transactions on Computers.

[23]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[24]  Theodosios Pavlidis,et al.  Polygonal Approximations by Newton's Method , 1977, IEEE Transactions on Computers.

[25]  Ramesh C. Jain,et al.  Invariant surface characteristics for 3D object recognition in range images , 1985, Comput. Vis. Graph. Image Process..

[26]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[27]  Kiriakos N. Kutulakos,et al.  Fast Computation of the Euclidian Distance Maps for Binary Images , 1992, Inf. Process. Lett..

[28]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[30]  Larry S. Davis,et al.  Understanding Shape: Angles and Sides , 1977, IEEE Transactions on Computers.

[31]  Toshimitsu Masuzawa,et al.  An Optimal Parallel Algorithm for the Euclidean Distance Maps of 2-D Binary Images , 1995, Inf. Process. Lett..

[32]  Adrian Hilton,et al.  Reliable Surface Reconstructiuon from Multiple Range Images , 1996, ECCV.

[33]  Gabriella Sanniti di Baja,et al.  Computing Voronoi diagrams in digital pictures , 1986, Pattern Recognit. Lett..

[34]  Per-Erik Danielson A new shape factor , 1978 .

[35]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Otfried Schwarzkopf Parallel Computation of Discrete Voronoi Diagrams (Extended Abstract) , 1989 .

[37]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[38]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[39]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[40]  Farzin Mokhtarian,et al.  Multi-scale description of space curves and three-dimensional objects , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  T. Poggio,et al.  Fingerprints theorems for zero crossings , 1985 .

[42]  Q. Ye The signed Euclidean distance transform and its applications , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[43]  Farzin Mokhtarian Fingerprint theorems for curvature and torsion zero-crossings , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Farzin Mokhtarian Multi-scale, torsion-based shape representations for space curves , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Farzin Mokhtarian,et al.  The renormalized curvature scale space and the evolution properties of planar curves , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Partha Pratim Das,et al.  A note on "distance transformations in arbitrary dimensions" , 1988, Comput. Vis. Graph. Image Process..

[47]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[49]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[51]  P. Danielsson Euclidean distance mapping , 1980 .

[52]  Jean Ponce,et al.  Describing surfaces , 1985, Comput. Vis. Graph. Image Process..

[53]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[54]  Berthold K. P. Horn,et al.  Filtering Closed Curves , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  A. Goetz Introduction to differential geometry , 1970 .