Meshless method for shallow water equations with free surface flow

Solving problems with free surface often encounters numerical difficulties related to excessive mesh distortion as is the case of dambreak or breaking waves. In this paper the Natural element method (NEM) is used to simulate a 2D shallow water flows in the presence of theses strong gradients. This particle-based method used a fully Lagrangian formulation based on the notion of natural neighbors. In the present study we consider the full non-linear set of Shallow Water Equations, with a transient flow under the Coriolis effect. For the numerical treatment of the nonlinear terms we used a Lagrangian technique based on the method of characteristics. This will allow avoiding divergence of Newton-Raphson scheme, when dealing with the convective terms. We also define a thin area close to the boundaries and a computational domain dedicated for nodal enrichment at each time step. Two numerical test cases were performed to verify the well-founded hopes for the future of this method in real applications.

[1]  Philippe Lorong,et al.  Interpolation naturelle sur les domaines non convexes par l'utilisation du diagramme de Voronoï contraint , 2003 .

[2]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[3]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[4]  Mhamed Souli,et al.  Application of Arbitrary Lagrange Euler Formulations to Flow-Induced Vibration Problems , 2002 .

[5]  Nicolas Aquelet,et al.  A new ALE formulation for sloshing analysis , 2003 .

[6]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[7]  Elías Cueto,et al.  Numerical integration in Natural Neighbour Galerkin methods , 2004 .

[8]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[9]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[10]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[11]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[12]  A. Blumberg,et al.  A Description of a Three‐Dimensional Coastal Ocean Circulation Model , 2013 .

[13]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[14]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  李幼升,et al.  Ph , 1989 .

[16]  Sergey Kharkovsky,et al.  Overview and Recent Advances , 2007 .

[17]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[18]  N. Heaps,et al.  Three-dimensional coastal ocean models , 1987 .

[19]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[20]  A. Soulaïmani,et al.  The natural volume method (NVM): Presentation and application to shallow water inviscid flows , 2009 .

[21]  A. D. Gordon,et al.  Interpreting multivariate data , 1982 .