Factors inducing degradation of properties after long-term oxidation of Si_3N_4–MoSi_2 electroconductive composites

The effects of heat treatments on strength and electrical conductivity after 100 h in air up to 1500 °C were evaluated on hot-pressed Si 3 N 4 –35 vol% MoSi 2 composite. The long-term oxidation involves microstructural changes at the material surface and subsurface, such as the formation of oxide scales and of a multilayered microstructure. At T ⩾ 1200 °C, a glassy silicate phase is formed, which embeds cristobalite grains and highly textured Y 2 Si 2 O 7 crystals. At the same time, MoSi 2 , assisted by oxygen, reacts with Si 3 N 4 forming Mo 5 Si 3 , Si 2 N 2 O, and SiO 2 . The decrease of the room temperature flexural strength reached about 25% in the samples exposed at 1000 °C for 100 h, compared to the as-produced materials. On the contrary, after treatments at higher temperatures, the strength decrease is lower at 1500 °C, the residual strength is 836 ± 62 MPa with a strength decrease of about 8%. The surface oxide scale is an insulator and, consequently, the electrical resistivity of the composite rises from 10 -3 to 10 7 –10 9 Ωcm.

[1]  D. Butt,et al.  Mechanical Behavior of MoSi2 Reinforced–Si3N4Matrix Composites , 2005 .

[2]  H. Kung,et al.  Fabrication and Microstructures of MoSi2 Reinforced–Si3N4 Matrix Composites , 2005 .

[3]  F. Marino,et al.  Post‐Hot‐Pressing and High‐Temperature Bending Strength of Reaction‐Bonded Silicon Nitride‐Molybdenum Disilicide and Silicon Nitride‐Tungsten Silicide Composites , 2005 .

[4]  D. Butt,et al.  Thermal Oxidation Kinetics of MoSi2‐Based Powders , 2004 .

[5]  H. Klemm,et al.  Silicon nitride/molybdenum disilicide composite with superior long-term oxidation resistance at 1500°C , 2004 .

[6]  C. Taut,et al.  Long-term stability of nonoxide ceramics in an oxidative environment at 1500 °C , 2003 .

[7]  S. Guicciardi,et al.  Microstructure and properties of Si3N4-MoSi2 composites , 2002 .

[8]  S. M. Ivanov,et al.  Model of oxide scale growth on Si3N4 ceramics: nitrogen diffusion through oxide scale and pore formation , 2001 .

[9]  Zbigniew S. Rak,et al.  Densification, microstructure and properties of electroconductive Si3N4–TaN composites. Part I: Densification and microstructure , 2001 .

[10]  V. Petrovsky,et al.  Densification, microstructure and properties of electroconductive Si3N4-TaN composites. Part II : Electrical and mechanical properties , 2001 .

[11]  S. Deevi,et al.  Oxidation Behavior of Molybdenum Silicides and Their Composites , 2000 .

[12]  Valery V. Skorokhod,et al.  Advanced Science and Technology of Sintering , 1999 .

[13]  K. Yamada,et al.  High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases , 1999 .

[14]  E. Courtright A comparison of MoSi2 matrix composites with other silicon-base composite systems , 1999 .

[15]  K. Niihara,et al.  Strong monolithic and composite MoSi2 materials by nanostructure design , 1999 .

[16]  A. K. Vasudevan,et al.  Key developments in high temperature structural silicides , 1999 .

[17]  Hideaki Takahashi,et al.  Low temperature oxidation of fully dense and porous MoSi2 , 1999 .

[18]  H. Herman,et al.  Processing and properties of MoSi2–SiC and MoSi2–Al2O3 , 1999 .

[19]  M. Sundberg,et al.  Low temperature oxidation behavior of a MoSi2-based material , 1999 .

[20]  A. Bellosi Design and Process of Non-Oxide Ceramics , 1999 .

[21]  L. Živković,et al.  SINTERING BEHAVIOUR AND MICROSTRUCTURE DEVELOPMENT IN ELECTROCONDUCTIVE Si3N4-TiN COMPOSITES , 1999 .

[22]  C. Berndt,et al.  Indentation Response of Molybdenum Disilicide , 1998 .

[23]  M. Surappa,et al.  Fabrication and characterization of SiC/MoSi2 composites , 1998 .

[24]  H. Sakata,et al.  Oxidation Behavior of Si3N4 Ceramics with Yb2O3, Al2O3 and SiO2 Additives , 1998 .

[25]  A. Bellosi,et al.  High Oxidation Resistance of Hot Pressed Silicon Nitride Containing Yttria and Lanthania , 1997 .

[26]  H. Klemm,et al.  Influence of Molybdenum Silicide Additions on High‐Temperature Oxidation Resistance of Silicon Nitride Materials , 1996 .

[27]  Y. Gogotsi,et al.  Identification of oxidation mechanisms in silicon nitride ceramics by transmission electron microscopy studies of oxide scales , 1995 .

[28]  S. Bryan,et al.  The SiO2-Si3N4 Interface, Part I: Nature of the Interphase , 1995 .

[29]  L. Ogbuji The SiO2‐SI3N4 Interface, Part II: O2 Permeation and Oxidation Reaction , 1995 .

[30]  T. Ekström,et al.  Hot‐Pressed MoSi2‐Particulate‐Reinforced α‐SiAlON Composites , 1995 .

[31]  Jow-Lay Huang,et al.  Investigation of silicon nitride composites toughened with prenitrided TiB2 , 1995 .

[32]  Y. Gogotsi,et al.  Particulate silicon nitride-based composites , 1994, Journal of Materials Science.

[33]  E. Lavernia,et al.  Processing of molybdenum disilicide , 1994, Journal of Materials Science.

[34]  E. Lavernia Review Processing of molybdenum disilicide , 1994 .

[35]  Ming Yuan Kao,et al.  Properties of Silicon Nitride–Molybdenum Disilicide Particulate Ceramic Composites , 1993 .

[36]  D. Wilkinson,et al.  Creep behavior of a sintered silicon nitride , 1993 .

[37]  Y. Gogotsi,et al.  Oxidation of yttria- and alumina-containing dense silicon nitride ceramics , 1993 .

[38]  M. Herrmann,et al.  Densification, microstructure and properties of Si3N4Ti(C,N) composites , 1993 .

[39]  Jow-Lay Huang,et al.  Investigation of chemical reactions in TiB2/Si3N4 composites , 1992 .

[40]  O. Lindqvist,et al.  The rate-controlling processes in the oxidation of HIPped Si3N4 with and without sintering additives , 1991 .

[41]  J. Petrovic,et al.  MoSi2 particle reinforced-SiC and Si3N4 matrix composites , 1990 .

[42]  Sylvia M. Johnson,et al.  Grain‐Boundary‐Phase Crystallization and Strength of Silicon Nitride Sintered with a YSlAlON Glass , 1990 .