Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review

Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H2), ammonium/ammonia (NH4+/NH3) or hydrogen sulphide (H2S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.

[1]  Fiona Curran-Cournane,et al.  Bacteria as Emerging Indicators of Soil Condition , 2016, Applied and Environmental Microbiology.

[2]  Rodolfo Javier Menes,et al.  Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. , 2002, International journal of systematic and evolutionary microbiology.

[3]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[4]  A. Schnürer Biogas Production: Microbiology and Technology. , 2016, Advances in biochemical engineering/biotechnology.

[5]  K. Nelson,et al.  Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche , 2010, Microbial Ecology.

[6]  L. Rohlin,et al.  The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. , 2010, Environmental microbiology.

[7]  S. Haruta,et al.  Reorganization of the bacterial and archaeal populations associated with organic loading conditions in a thermophilic anaerobic digester. , 2015, Journal of bioscience and bioengineering.

[8]  A. Pühler,et al.  Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants , 2018, Applied Microbiology and Biotechnology.

[9]  Willy Verstraete,et al.  Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. , 2016, Environmental microbiology.

[10]  D. C. Swarts,et al.  Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT) , 2012, Standards in genomic sciences.

[11]  P. Wilmes,et al.  A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems , 2018, Biotechnology for Biofuels.

[12]  E. Roden,et al.  Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen , 2011, Applied and Environmental Microbiology.

[13]  R. Gunsalus,et al.  Syntrophy in anaerobic global carbon cycles. , 2009, Current opinion in biotechnology.

[14]  Carlos Martín,et al.  Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. , 2016, Bioresource technology.

[15]  T. Langer,et al.  Proteiniborus indolifex sp. nov., isolated from a thermophilic industrial-scale biogas plant. , 2018, International journal of systematic and evolutionary microbiology.

[16]  Raphael Ortiz,et al.  Toxicants inhibiting anaerobic digestion: a review. , 2014, Biotechnology advances.

[17]  Jun-Wei Lim,et al.  Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation. , 2018, Waste management.

[18]  Natalia N. Ivanova,et al.  The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist , 2011, PloS one.

[19]  W. Qiao,et al.  Effect of ammonia inhibition on microbial community dynamic and process functional resilience in mesophilic methane fermentation of chicken manure , 2015 .

[20]  Å. Nordberg,et al.  Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[21]  Gerhard Wanner,et al.  Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. , 2015, International journal of systematic and evolutionary microbiology.

[22]  P. Mieczkowski,et al.  The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential , 2012, BMC Genomics.

[23]  M. Rother,et al.  Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. , 2015, International journal of systematic and evolutionary microbiology.

[24]  B. Ollivier,et al.  Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium. , 2016, International journal of systematic and evolutionary microbiology.

[25]  E. Thorin,et al.  Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin , 2018, Applied Energy.

[26]  S. Kleinsteuber,et al.  Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. , 2016, Bioresource technology.

[27]  A. Castellano-Hinojosa,et al.  New concepts in anaerobic digestion processes: recent advances and biological aspects , 2018, Applied Microbiology and Biotechnology.

[28]  Alfons J. M. Stams,et al.  Electron transfer in syntrophic communities of anaerobic bacteria and archaea , 2009, Nature Reviews Microbiology.

[29]  D. Stuckey,et al.  Trace metal speciation and bioavailability in anaerobic digestion: A review. , 2016, Biotechnology advances.

[30]  M. Lebuhn,et al.  Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. , 2017, Bioresource technology.

[31]  A. Stams,et al.  Methanogens, sulphate and heavy metals: a complex system , 2015, Reviews in Environmental Science and Bio/Technology.

[32]  Lynne A. Goodwin,et al.  Complete genome sequence of Cellulomonas flavigena type strain (134T) , 2010, Standards in genomic sciences.

[33]  B. Schink,et al.  Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. , 2015, International journal of systematic and evolutionary microbiology.

[34]  J. Graf,et al.  Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey , 2015, Applied Microbiology and Biotechnology.

[35]  K. S. Creamer,et al.  Inhibition of anaerobic digestion process: a review. , 2008, Bioresource technology.

[36]  E. Pelletier,et al.  Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence , 2010, BMC Genomics.

[37]  J. Shendure,et al.  DNA sequencing at 40: past, present and future , 2017, Nature.

[38]  S. Kleinsteuber,et al.  Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition , 2018, Applied Microbiology and Biotechnology.

[39]  Marta Carballa,et al.  Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. , 2015, Bioresource technology.

[40]  Chang Chen,et al.  Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. , 2013, Bioresource technology.

[41]  Meijuan Yu,et al.  Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition. , 2015, Bioresource technology.

[42]  Willy Verstraete,et al.  Repeated pulse feeding induces functional stability in anaerobic digestion , 2013, Microbial biotechnology.

[43]  Tong Zhang,et al.  Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. , 2017, Environmental science & technology.

[44]  F. Centler,et al.  Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion , 2018, Biotechnology for Biofuels.

[45]  J. Blom,et al.  The completely annotated genome and comparative genomics of the Peptoniphilaceae bacterium str. ING2-D1G, a novel acidogenic bacterium isolated from a mesophilic biogas reactor. , 2017, Journal of biotechnology.

[46]  Anamitra Bhattacharyya,et al.  The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth , 2007, Proceedings of the National Academy of Sciences.

[47]  Irini Angelidaki,et al.  Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. , 2016, Bioresource technology.

[48]  S. D. Yap,et al.  Humic acid inhibition of hydrolysis and methanogenesis with different anaerobic inocula. , 2018, Waste management.

[49]  Bernhard Schink,et al.  Biogas process parameters—energetics and kinetics of secondary fermentations in methanogenic biomass degradation , 2015, Applied Microbiology and Biotechnology.

[50]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[51]  L. Rohlin,et al.  Complete genome sequence of Methanospirillum hungatei type strain JF1 , 2016, Standards in Genomic Sciences.

[52]  A. Schnürer,et al.  Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production , 2018, Applied Energy.

[53]  G. Tyson,et al.  Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. , 2014, Current opinion in biotechnology.

[54]  J. L. Green,et al.  A unified initiative to harness Earth's microbiomes , 2015, Science.

[55]  P. Delfosse,et al.  Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity , 2016, Environmental microbiology.

[56]  D. Zitomer,et al.  Relating Anaerobic Digestion Microbial Community and Process Function , 2015, Microbiology insights.

[57]  Y. Huang,et al.  Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw , 2017, International journal of systematic and evolutionary microbiology.

[58]  E. Trably,et al.  How to use molecular biology tools for the study of the anaerobic digestion process? , 2015, Reviews in Environmental Science and Bio/Technology.

[59]  Dieter M. Tourlousse,et al.  Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi. , 2016, International journal of systematic and evolutionary microbiology.

[60]  M. Klocke,et al.  Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor. , 2014, International journal of systematic and evolutionary microbiology.

[61]  I. Angelidaki,et al.  Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens. , 2018, Bioresource technology.

[62]  Yongxiang Zhang,et al.  Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. , 2010, International journal of systematic and evolutionary microbiology.

[63]  I. Norli,et al.  Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. , 2016, Bioresource technology.

[64]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[65]  R. García-Gimeno,et al.  Risk Factors Influencing Microbial Contamination in Food Service Centers , 2016 .

[66]  S. Kleinsteuber,et al.  Inhibitory Effect of Coumarin on Syntrophic Fatty Acid-Oxidizing and Methanogenic Cultures and Biogas Reactor Microbiomes , 2017, Applied and Environmental Microbiology.

[67]  S. Kleinsteuber,et al.  Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community. , 2015, FEMS microbiology ecology.

[68]  Aaron Marc Saunders,et al.  Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. , 2015, Water research.

[69]  A. Ueki,et al.  Description of Propionispira arcuata sp. nov., isolated from a methanogenic reactor of cattle waste, reclassification of Zymophilus raffinosivorans and Zymophilus paucivorans as Propionispira raffinosivorans comb. nov. and Propionispira paucivorans comb. nov. and emended description of the genus Pro , 2014, International journal of systematic and evolutionary microbiology.

[70]  Yawei Wang,et al.  Biochemical Conversion and Microbial Community in Response to Ternary pH Buffer System during Anaerobic Digestion of Swine Manure , 2018, Energies.

[71]  Lynne A. Goodwin,et al.  Complete genome sequence of Aminobacterium colombiense type strain (ALA-1T) , 2010, Standards in genomic sciences.

[72]  Maria Westerholm,et al.  Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. , 2011, Systematic and applied microbiology.

[74]  Jingxin Zhang,et al.  Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review , 2019, Renewable and Sustainable Energy Reviews.

[75]  Eeva Furman,et al.  The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. , 2018, The Science of the total environment.

[76]  W. Verstraete,et al.  The microbiome as engineering tool: Manufacturing and trading between microorganisms. , 2017, New biotechnology.

[77]  L. T. Angenent,et al.  Substrate type drives variation in reactor microbiomes of anaerobic digesters. , 2014, Bioresource technology.

[78]  Jaai Kim,et al.  Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion , 2018 .

[79]  M. Carballa,et al.  Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. , 2015, Current opinion in biotechnology.

[80]  Ling Wang,et al.  A methodological framework for linking bioreactor function to microbial communities and environmental conditions. , 2015, Current opinion in biotechnology.

[81]  Takashi Yamaguchi,et al.  Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. , 2014, International journal of systematic and evolutionary microbiology.

[82]  B. Patel,et al.  Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. , 2000, International journal of systematic and evolutionary microbiology.

[83]  Yongzhong Feng,et al.  Review on Research Achievements of Biogas from Anaerobic Digestion , 2016 .

[84]  J. Klang,et al.  Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply. , 2016, Bioresource technology.

[85]  T. R. Sreekrishnan,et al.  Influence of Process Parameters on Anaerobic Digestion Microbiome in Bioenergy Production: Towards an Improved Understanding , 2017, BioEnergy Research.

[86]  Georges N. Cohen,et al.  “Candidatus Cloacamonas Acidaminovorans”: Genome Sequence Reconstruction Provides a First Glimpse of a New Bacterial Division , 2008, Journal of bacteriology.

[87]  S. Hattori Syntrophic acetate-oxidizing microbes in methanogenic environments. , 2008, Microbes and environments.

[88]  B. Çalli,et al.  Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics , 2018 .

[89]  Szymon T Calus,et al.  NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform , 2018, bioRxiv.

[90]  G. Bochmann,et al.  Pretreatment of feedstock for enhanced biogas production , 2014 .

[91]  J. Blom,et al.  Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment. , 2016, Journal of biotechnology.

[92]  U. Szewzyk,et al.  Nexus between the microbial diversity level and the stress tolerance within the biogas process. , 2019, Anaerobe.

[93]  D. Le Paslier,et al.  Novel Major Bacterial Candidate Division within a Municipal Anaerobic Sludge Digester , 2005, Applied and Environmental Microbiology.

[94]  S. Sørensen,et al.  454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. , 2013, FEMS microbiology ecology.

[95]  Willy Verstraete,et al.  Microbial Resource Management: The Road To Go for Environmental Biotechnology , 2007 .

[96]  John C. Avise,et al.  Resistance, Resilience, and Redundancy in Microbial Communities , 2008 .

[97]  G. Zeeman,et al.  Presence and Role of Anaerobic Hydrolytic Microbes in Conversion of Lignocellulosic Biomass for Biogas Production , 2015 .

[98]  L. Nghiem,et al.  Microbial Community in Anaerobic Digestion System: Progression in Microbial Ecology , 2018, Energy, Environment, and Sustainability.

[99]  A. Pauss,et al.  Instrumentation and control of anaerobic digestion processes: a review and some research challenges , 2015, Reviews in Environmental Science and Bio/Technology.

[100]  C. Woese,et al.  Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms , 1999, Archives of Microbiology.

[101]  Rita Grosch,et al.  Plant microbial diversity is suggested as the key to future biocontrol and health trends. , 2017, FEMS microbiology ecology.

[102]  S. Spring,et al.  Complete genome sequence of the moderate thermophile Anaerobaculum mobile type strain (NGAT) , 2013, Standards in genomic sciences.

[103]  Jaai Kim,et al.  Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function. , 2016, Water research.

[104]  A. Stams,et al.  Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. , 2016, Applied Microbiology and Biotechnology.

[105]  Sumaeth Chavadej,et al.  The Effect of Temperature on the Methanogenic Activity in Relation to Micronutrient Availability , 2018 .

[106]  U. Ijaz,et al.  Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. , 2017, Water research.

[107]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[108]  A. M. Ziganshin,et al.  Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes. , 2015, Bioresource technology.

[109]  Rajinikanth Rajagopal,et al.  A critical review on inhibition of anaerobic digestion process by excess ammonia. , 2013, Bioresource technology.

[110]  Jeppe Lund Nielsen,et al.  Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. , 2017, Bioresource technology.

[111]  Xiuzhu Dong,et al.  Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. , 2005, International journal of systematic and evolutionary microbiology.

[112]  H. Makun Significance, Prevention and Control of Food Related Diseases , 2016 .

[113]  Y. Li,et al.  Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters , 2017, PloS one.

[114]  T. Langer,et al.  Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. , 2016, International journal of systematic and evolutionary microbiology.

[115]  A. Pühler,et al.  Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions , 2018, Biotechnology reports.

[116]  Søren J. Sørensen,et al.  Microbial indicators for soil quality , 2017, Biology and Fertility of Soils.

[117]  Battle Karimi,et al.  Microbial diversity and ecological networks as indicators of environmental quality , 2017, Environmental Chemistry Letters.

[118]  Alastair J Ward,et al.  Optimisation of the anaerobic digestion of agricultural resources. , 2008, Bioresource technology.

[119]  H. Akasaka,et al.  Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. , 2006, International journal of systematic and evolutionary microbiology.

[120]  Y. Kamagata,et al.  Lactivibrio alcoholicus gen. nov., sp. nov., an anaerobic, mesophilic, lactate-, alcohol-, carbohydrate- and amino-acid-degrading bacterium in the phylum Synergistetes. , 2014, International journal of systematic and evolutionary microbiology.

[121]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[122]  K. McMahon,et al.  Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions--II: Microbial population dynamics. , 2001, Water research.

[123]  M. Marzorati,et al.  Microbial Resource Management revisited: successful parameters and new concepts , 2011, Applied Microbiology and Biotechnology.

[124]  Hideki Harada,et al.  Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. , 2006, International journal of systematic and evolutionary microbiology.

[125]  K. Cybulska,et al.  Quantity and Quality of Biogas Produced from the Poultry Sludge Optimized by Filamentous Fungi , 2018, Ecological Chemistry and Engineering S.

[126]  H. Carrère,et al.  Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. , 2016, Bioresource technology.

[127]  Erik Dahlquist,et al.  Effects of mixing on the result of anaerobic digestion: Review , 2014 .

[128]  Robert H. White,et al.  The genome of M. acetivorans reveals extensive metabolic and physiological diversity. , 2002, Genome research.

[129]  Xiuzhu Dong,et al.  The Genome Characteristics and Predicted Function of Methyl-Group Oxidation Pathway in the Obligate Aceticlastic Methanogens, Methanosaeta spp , 2012, PloS one.

[130]  H. Flint,et al.  Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. , 1997, International journal of systematic bacteriology.

[131]  M. Rother,et al.  Methanosarcina flavescens sp. nov., a methanogenic archaeon isolated from a full-scale anaerobic digester. , 2016, International journal of systematic and evolutionary microbiology.

[132]  S. Khanal,et al.  Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. , 2017, Bioresource technology.

[133]  Stefanie Widder,et al.  Deciphering microbial interactions and detecting keystone species with co-occurrence networks , 2014, Front. Microbiol..

[134]  I. Angelidaki,et al.  New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances , 2015, Biotechnology for Biofuels.

[135]  N. Kyrpides,et al.  Complete genome sequence of Paludibacter propionicigenes type strain (WB4T) , 2011, Standards in genomic sciences.

[136]  Om Prakash,et al.  Technicalities and Glitches of Terminal Restriction Fragment Length Polymorphism (T-RFLP) , 2014, Indian Journal of Microbiology.

[137]  R. Kaul,et al.  Complete Genome Sequence of Methanosaeta concilii, a Specialist in Aceticlastic Methanogenesis , 2011, Journal of bacteriology.

[138]  Willy Verstraete,et al.  How to get more out of molecular fingerprints: practical tools for microbial ecology. , 2008, Environmental microbiology.

[139]  J. Dolfing,et al.  A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. , 2018, Bioresource technology.

[140]  Kaiqin Xu,et al.  Effect of Mixing Driven by Siphon Flow: Parallel Experiments Using the Anaerobic Reactors with Different Mixing Modes , 2013 .

[141]  A. Pühler,et al.  Complete genome analysis of Clostridium bornimense strain M2/40(T): A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor. , 2016, Journal of biotechnology.

[142]  E. Bongcam-Rudloff,et al.  Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation , 2015, PloS one.

[143]  Marta Nierychlo,et al.  The impact of immigration on microbial community composition in full-scale anaerobic digesters , 2017, Scientific Reports.

[144]  Thomas Udelhoven,et al.  Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery , 2015, Biotechnology for Biofuels.

[145]  S. Horn,et al.  Chapter 14:Biogas Production from Lignin via Anaerobic Digestion , 2018 .

[146]  Chang Liu,et al.  Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives , 2017 .

[147]  Patrick K. H. Lee,et al.  Operation-driven heterogeneity and overlooked feed-associated populations in global anaerobic digester microbiome. , 2017, Water research.

[148]  B. Patel,et al.  Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. , 1999, Systematic and applied microbiology.

[149]  Lee J Kerkhof,et al.  Profiling bacterial communities by MinION sequencing of ribosomal operons , 2017, Microbiome.

[150]  E. Bongcam-Rudloff,et al.  Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB) , 2016, Standards in Genomic Sciences.

[151]  P. Antunes,et al.  Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. , 2015, Journal of the science of food and agriculture.

[152]  V. Zverlov,et al.  Herbivorax saccincola gen. nov., sp. nov., a cellulolytic, anaerobic, thermophilic bacterium isolated via in sacco enrichments from a lab-scale biogas reactor. , 2016, International journal of systematic and evolutionary microbiology.

[153]  Matthew K. Lau,et al.  How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators , 2016 .

[154]  B. Tindall,et al.  Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. , 2005, International journal of systematic and evolutionary microbiology.

[155]  B. Neville,et al.  Transmission of the gut microbiota: spreading of health , 2017, Nature Reviews Microbiology.

[156]  D. Maeder,et al.  The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes , 2006, Journal of bacteriology.

[157]  Jizhong Zhou,et al.  Bacteriophage–prokaryote dynamics and interaction within anaerobic digestion processes across time and space , 2017, Microbiome.

[158]  J. Klang,et al.  Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. , 2018, Bioresource technology.

[159]  Y. Kamagata,et al.  Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. , 2007, International journal of systematic and evolutionary microbiology.

[160]  Yamrot M. Amha,et al.  Inhibition of anaerobic digestion processes: Applications of molecular tools. , 2018, Bioresource technology.

[161]  V. Zverlov,et al.  Draft genome sequence of Herbinix hemicellulosilytica T3/55 T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor. , 2015, Journal of biotechnology.

[162]  Maria Westerholm,et al.  Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance , 2016 .

[163]  T. Bouchez,et al.  Molecular microbiology methods for environmental diagnosis , 2016, Environmental Chemistry Letters.

[164]  Robert Heyer,et al.  Diagnostic Concept for Dynamically Operated Biogas Production Plants , 2016 .

[165]  Wojciech M. Budzianowski,et al.  A review of potential innovations for production, conditioning and utilization of biogas with multiple criteria assessment , 2016 .

[166]  Kazuya Watanabe,et al.  Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. , 2009, International journal of systematic and evolutionary microbiology.

[167]  A. Ueki,et al.  Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste. , 2009, International journal of systematic and evolutionary microbiology.

[168]  E. Trably,et al.  Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. , 2015, Bioresource technology.

[169]  Aaron Marc Saunders,et al.  Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion , 2018, Scientific Reports.

[170]  M. Gerardi The Microbiology of Anaerobic Digesters , 2003 .

[171]  U. Szewzyk,et al.  Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage , 2015, Microbial biotechnology.

[172]  B. Drosg Process monitoring in biogas plants Process monitoring in biogas plants , 2014 .

[173]  O. Ince,et al.  Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass , 2017, Applied Microbiology and Biotechnology.

[174]  M. Carballa,et al.  Outlining microbial community dynamics during temperature drop and subsequent recovery period in anaerobic co-digestion systems. , 2014, Journal of biotechnology.

[175]  Xiuzhu Dong,et al.  Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. , 2006, International journal of systematic and evolutionary microbiology.

[176]  M. Sakamoto,et al.  Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters. , 2012, International journal of systematic and evolutionary microbiology.

[177]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[178]  J. Steyer,et al.  State indicators for monitoring the anaerobic digestion process. , 2010, Water research.

[179]  Wenke Liu,et al.  Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review , 2012, Agronomy for Sustainable Development.

[180]  Willy Verstraete,et al.  Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. , 2012, Bioresource technology.

[181]  P. Lawson,et al.  Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. , 2008, International journal of systematic and evolutionary microbiology.

[182]  L. T. Angenent,et al.  Bacterial community structures are unique and resilient in full-scale bioenergy systems , 2011, Proceedings of the National Academy of Sciences.