Compliant mechanism design using multi-objective topology optimization scheme of continuum structures
暂无分享,去创建一个
K. Abdel-Malek | L. Chen | Z. Luo | J. Yang | Y. Zhang
[1] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[2] M. Bendsøe,et al. Generating optimal topologies in structural design using a homogenization method , 1988 .
[3] M. Zhou,et al. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .
[4] Larry L. Howell,et al. On the Nomenclature and Classification of Compliant Mechanisms. the Components of Mechanisms , 1992 .
[5] Larry L. Howell,et al. A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .
[6] George I. N. Rozvany,et al. Layout Optimization of Structures , 1995 .
[7] O. Sigmund,et al. Checkerboard patterns in layout optimization , 1995 .
[8] C. S. Jog,et al. A new approach to variable-topology shape design using a constraint on perimeter , 1996 .
[9] Ole Sigmund,et al. On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .
[10] O. Sigmund,et al. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.
[11] Mary Frecker,et al. Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .
[12] J. Petersson,et al. Slope constrained topology optimization , 1998 .
[13] Noboru Kikuchi,et al. TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .
[14] M. Bendsøe,et al. Topology optimization of continuum structures with local stress constraints , 1998 .
[15] J. Petersson,et al. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .
[16] M. Bendsøe,et al. Material interpolation schemes in topology optimization , 1999 .
[17] Ole Sigmund,et al. Topology synthesis of large‐displacement compliant mechanisms , 2001 .
[18] Ole Sigmund,et al. Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .
[19] B. Bourdin. Filters in topology optimization , 2001 .
[20] J. Petersson,et al. Topology optimization using regularized intermediate density control , 2001 .
[21] K. Svanberg,et al. An alternative interpolation scheme for minimum compliance topology optimization , 2001 .
[22] G. Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .
[23] G. Rozvany. Topology optimization in structural mechanics , 2001 .
[24] Thomas A. Poulsen. A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization , 2002 .
[25] Krister Svanberg,et al. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..
[26] Z. Gaspar,et al. Addenda and corrigenda to: (1) “Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics" and (2) “On design- dependent constraints and singular topologies" (Vol. 21, No. 2, 2001, pp. 90–108; 164–172) , 2002 .
[27] G. K. Ananthasuresh,et al. Design of Distributed Compliant Mechanisms , 2003 .
[28] Ole Sigmund,et al. Extensions and applications , 2004 .
[29] Y. Y. Kim,et al. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage , 2004 .