Polling systems in heavy traffic: Higher moments of the delay

We study an asymmetric cyclic polling model with general mixtures of exhaustive and gated service, and with zero switch-over times, in heavy traffic. We derive closed-form expressions for all moments of the steady-state delay at each of the queues, under standard heavy-traffic scalings. The expressions obtained provide new and useful insights into the behavior of polling systems under heavy-load conditions.

[1]  D. Sarkar,et al.  Expected waiting time for nonsymmetric cyclic queueing systems—exact results and applications , 1989 .

[2]  Mandyam M. Srinivasan,et al.  Relating polling models with zero and nonzero switchover times , 1995, Queueing Syst. Theory Appl..

[3]  Kin K. Leung,et al.  Cyclic-Service Systems with Probabilistically-Limited Service , 1991, IEEE J. Sel. Areas Commun..

[4]  Sem C. Borst,et al.  Polling Models With and Without Switchover Times , 1997, Oper. Res..

[5]  J. P. C. Blanc,et al.  Performance Analysis and Optimization with the Power-Series Algorithm , 1993, Performance/SIGMETRICS Tutorials.

[6]  Michael J. Ferguson Computation of the Variance of the Waiting Time for Token Rings , 1986, IEEE J. Sel. Areas Commun..

[7]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[8]  Mandyam M. Srinivasan,et al.  The individual station technique for the analysis of cyclic polling systems , 1996 .

[9]  Christine Fricker,et al.  Monotonicity and stability of periodic polling models , 1994, Queueing Syst. Theory Appl..

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  Hideaki Takagi,et al.  Queueing analysis of polling models: progress in 1990-1994 , 1998 .

[12]  Robert D. van der Mei,et al.  Polling systems in heavy traffic: Exhaustiveness of service policies , 1997, Queueing Syst. Theory Appl..

[13]  Hideaki Takagi,et al.  Analysis of polling systems , 1986 .

[14]  Seiya Kudoh,et al.  SECOND MOMENTS OF THE WAITING TIME IN SYMMETRIC POLLING SYSTEMS , 2000 .

[15]  Mandyam M. Srinivasan,et al.  Descendant set: an efficient approach for the analysis of polling systems , 1994, IEEE Trans. Commun..

[16]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[17]  Edward G. Coffman,et al.  Polling Systems in Heavy Traffic: A Bessel Process Limit , 1998, Math. Oper. Res..

[18]  Ward Whitt,et al.  Computing Distributions and Moments in Polling Models by Numerical Transform Inversion , 1996, Perform. Evaluation.

[19]  Moshe Sidi,et al.  Polling systems: applications, modeling, and optimization , 1990, IEEE Trans. Commun..

[20]  M. Reiman,et al.  Polling Systems with Zero Switchover Times: A Heavy-Traffic Averaging Principle , 1995 .

[21]  R. D. van der Mei,et al.  Expected delay analysis of polling systems in heavy traffic , 1998, Advances in Applied Probability.

[22]  Robert D. van der Mei,et al.  Optimization of Polling Systems with Bernoulli Schedules , 1995, Perform. Evaluation.

[23]  Ward Whitt,et al.  Computing transient and steady-state distributions in polling models by numerical transform inversion , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[24]  R. D. van der Mei Polling systems with periodic server routing in heavy traffic , 1999 .

[25]  R. D. van der Mei,et al.  Polling systems in heavy traffic: Higher moments of the delay , 1999, Queueing Syst. Theory Appl..

[26]  Lawrence M. Wein,et al.  Dynamic Scheduling of a Two-Class Queue with Setups , 2011, Oper. Res..

[27]  Dirk P. Kroese HEAVY TRAFFIC ANALYSIS FOR CONTINUOUS POLLING MODELS , 1995 .