Rank correlated subgroup discovery

[1]  Céline Robardet,et al.  Contextual Subgraph Discovery with Mobility Models , 2017, COMPLEX NETWORKS.

[2]  Marc Plantevit,et al.  Flash Points: Discovering Exceptional Pairwise Behaviors in Vote or Rating Data , 2017, ECML/PKDD.

[3]  Mehdi Kaytoue-Uberall,et al.  Mining Convex Polygon Patterns with Formal Concept Analysis , 2017, IJCAI.

[4]  Céline Robardet,et al.  Exceptional contextual subgraph mining , 2017, Machine Learning.

[5]  Marc Plantevit,et al.  Unsupervised Exceptional Attributed Sub-Graph Mining in Urban Data , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[6]  Carlos Soares,et al.  Exceptional Preferences Mining , 2016, DS.

[7]  Céline Robardet,et al.  Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships , 2016, DS.

[8]  Alicia Troncoso Lora,et al.  Obtaining optimal quality measures for quantitative association rules , 2016, Neurocomputing.

[9]  Bendimerad Ahmed Anes,et al.  Unsupervised Exceptional Attributed Sub-Graph Mining in Urban Data , 2016 .

[10]  Wouter Duivesteijn,et al.  Exceptionally monotone models—the rank correlation model class for Exceptional Model Mining , 2017, 2015 IEEE International Conference on Data Mining.

[11]  Frank Puppe,et al.  Fast exhaustive subgroup discovery with numerical target concepts , 2016, Data Mining and Knowledge Discovery.

[12]  Wouter Duivesteijn,et al.  Exceptional Model Mining , 2008, Data Mining and Knowledge Discovery.

[13]  Henrik Grosskreutz,et al.  A Relevance Criterion for Sequential Patterns , 2013, ECML/PKDD.

[14]  K. Tsuda,et al.  Statistical significance of combinatorial regulations , 2013, Proceedings of the National Academy of Sciences.

[15]  Ansaf Salleb-Aouissi,et al.  QuantMiner for mining quantitative association rules , 2013, J. Mach. Learn. Res..

[16]  A. Knobbe,et al.  Diverse subgroup set discovery , 2012, Data Mining and Knowledge Discovery.

[17]  Thomas Gärtner,et al.  Linear space direct pattern sampling using coupling from the past , 2012, KDD.

[18]  Daniel Paurat,et al.  Direct local pattern sampling by efficient two-step random procedures , 2011, KDD.

[19]  Amedeo Napoli,et al.  Revisiting Numerical Pattern Mining with Formal Concept Analysis , 2011, IJCAI.

[20]  Roman Słowiński,et al.  Sequential covering rule induction algorithm for variable consistency rough set approaches , 2011, Inf. Sci..

[21]  Alexandre Termier,et al.  PGLCM: efficient parallel mining of closed frequent gradual itemsets , 2010, 2010 IEEE International Conference on Data Mining.

[22]  A. J. Feelders,et al.  Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach , 2010, 2010 IEEE International Conference on Data Mining.

[23]  Tijl De Bie,et al.  Maximum entropy models and subjective interestingness: an application to tiles in binary databases , 2010, Data Mining and Knowledge Discovery.

[24]  Łukasz Wróbel,et al.  Application of Rule Induction Algorithms for Analysis of Data Collected by Seismic Hazard Monitoring Systems in Coal Mines , 2010 .

[25]  Stefan Rüping,et al.  On subgroup discovery in numerical domains , 2009, Data Mining and Knowledge Discovery.

[26]  Jean-François Boulicaut,et al.  Closed patterns meet n-ary relations , 2009, TKDD.

[27]  Chun-Che Huang,et al.  Rule induction based on an incremental rough set , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[28]  Mohammad Al Hasan,et al.  ORIGAMI: A Novel and Effective Approach for Mining Representative Orthogonal Graph Patterns , 2008, Stat. Anal. Data Min..

[29]  Frank Puppe,et al.  SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery , 2006, PKDD.

[30]  Szymon Jaroszewicz,et al.  Mining rank-correlated sets of numerical attributes , 2006, KDD '06.

[31]  Jiawei Han,et al.  Extracting redundancy-aware top-k patterns , 2006, KDD '06.

[32]  Peter A. Flach,et al.  Subgroup Discovery with CN2-SD , 2004, J. Mach. Learn. Res..

[33]  Stefan Kramer,et al.  Quantitative association rules based on half-spaces: an optimization approach , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[34]  Stephen D. Bay,et al.  Detecting Group Differences: Mining Contrast Sets , 2001, Data Mining and Knowledge Discovery.

[35]  Eyke Hüllermeier,et al.  Association Rules for Expressing Gradual Dependencies , 2002, PKDD.

[36]  Shinichi Morishita,et al.  Transversing itemset lattices with statistical metric pruning , 2000, PODS '00.

[37]  Jinyan Li,et al.  Efficient mining of emerging patterns: discovering trends and differences , 1999, KDD '99.

[38]  Yehuda Lindell,et al.  A Statistical Theory for Quantitative Association Rules , 1999, KDD '99.

[39]  Peter A. Flach,et al.  Rule Evaluation Measures: A Unifying View , 1999, ILP.

[40]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[41]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[42]  Willi Klösgen,et al.  Explora: A Multipattern and Multistrategy Discovery Assistant , 1996, Advances in Knowledge Discovery and Data Mining.