Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image Classification

[1]  Hao Wu,et al.  Convolutional Recurrent Neural Networks forHyperspectral Data Classification , 2017, Remote. Sens..

[2]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[3]  Raymond Y. K. Lau,et al.  Hyperspectral Image Classification With Deep Learning Models , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[5]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[6]  Lorenzo Bruzzone,et al.  A Deep Network Architecture for Super-Resolution-Aided Hyperspectral Image Classification With Classwise Loss , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Yun Shi,et al.  3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images , 2018, Remote. Sens..

[8]  Jonathan Cheung-Wai Chan,et al.  Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Nicolas Audebert,et al.  Deep Learning for Classification of Hyperspectral Data: A Comparative Review , 2019, IEEE Geoscience and Remote Sensing Magazine.

[12]  Geoffrey E. Hinton,et al.  Machine Learning for Aerial Image Labeling , 2013 .

[13]  Xiao Xiang Zhu,et al.  Unsupervised Spectral–Spatial Feature Learning via Deep Residual Conv–Deconv Network for Hyperspectral Image Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jie Geng,et al.  Spectral–Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Stefano Ermon,et al.  Semantic Segmentation of Crop Type in Africa: A Novel Dataset and Analysis of Deep Learning Methods , 2019, CVPR Workshops.

[16]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[18]  Antonio J. Plaza,et al.  Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[20]  Chen Li,et al.  Spatial Sequential Recurrent Neural Network for Hyperspectral Image Classification , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[22]  Joachim M. Buhmann,et al.  Crowdsourcing the creation of image segmentation algorithms for connectomics , 2015, Front. Neuroanat..

[23]  Rinat Mukhometzianov,et al.  CapsNet comparative performance evaluation for image classification , 2018, ArXiv.

[24]  Pascal Fua,et al.  Beyond the Pixel-Wise Loss for Topology-Aware Delineation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Xiuping Jia,et al.  Deep Fusion of Remote Sensing Data for Accurate Classification , 2017, IEEE Geoscience and Remote Sensing Letters.

[26]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[27]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[28]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[30]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[31]  Nicolas Courty,et al.  Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions , 2015, ArXiv.

[32]  J. A. Gualtieri,et al.  Support vector machines for classification of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[33]  Saurabh Prasad,et al.  Report on the 2013 IEEE GRSS Data Fusion Contest: Fusion of Hyperspectral and LiDAR Data [Technical Committees] , 2013 .

[34]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[36]  Martin Jägersand,et al.  Convolutional gated recurrent networks for video segmentation , 2016, 2017 IEEE International Conference on Image Processing (ICIP).

[37]  Ruggero G. Pensa,et al.  $M^3\text{Fusion}$: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Xiao Xiang Zhu,et al.  Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Qingshan Liu,et al.  Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification , 2017, Remote. Sens..

[40]  Mercedes Eugenia Paoletti,et al.  Deep learning classifiers for hyperspectral imaging: A review , 2019 .

[41]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[42]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Pascal Fua,et al.  Recurrent U-Net for Resource-Constrained Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Aleksandra Pizurica,et al.  Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features , 2015, IEEE Geoscience and Remote Sensing Letters.

[46]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[47]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Xiao Xiang Zhu,et al.  Deep Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Larry S. Davis,et al.  Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Nikolaos Doulamis,et al.  Deep supervised learning for hyperspectral data classification through convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[52]  Xiao Xiang Zhu,et al.  Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources , 2017, IEEE Geoscience and Remote Sensing Magazine.

[53]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[54]  Marc Rußwurm,et al.  Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders , 2018, ISPRS Int. J. Geo Inf..

[55]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.