Low-Dimensional Thermoelectricity

Thermoelectric materials are used as solid-state heat pumps and as power generators. The low e‐ciency of devices based on conventional bulk thermoelectric materials conflnes their applications to niches in which their advantages in compactness and controllability outweigh that drawback. Recent developments in nanotechnologies have led to the development of thermoelectric nano-materials with double the e‐ciency of the best bulk materials, opening several new classes of applications for thermoelectric energy conversion technology. We review here flrst the physical mechanisms that result in the superior thermoelectric performance of low-dimensional solids, compared to bulk thermoelectric materials: they are a reduction of the lattice thermal conductivity, and an increase in the Seebeck coe‐cient S for a given carrier density. The second part of this review summarizes experimental results obtained on macroscopic arrays of bismuth, antimony, and zinc nanowires with diameters ranging from 200 to 7 nm. We show how size-quantization efiects greatly increase S for a given carrier concentration, as long as the diameter of the nanowires remains above 9 nm, below which localization efiects start dominating. In a third part, we give data on PbTe nanocomposites, particularly bulk samples containing 30 nm diameter Pb inclusions. These inclusions afiect the electron scattering in such a way as to again increase the Seebeck coe‐cient.

[1]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[2]  A. Guinier Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.

[3]  G. D. Preston Structure of Age-Hardened Aluminium-Copper Alloys , 1938, Nature.

[4]  Maria Telkes,et al.  The Efficiency of Thermoelectric Generators. I. , 1947 .

[5]  K. Lehovec,et al.  Light Emission Produced by Current Injected into a Green Silicon-Carbide Crystal , 1953 .

[6]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[7]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[8]  Peter L. Balise,et al.  Applications of Thermoelectricity , 1960 .

[9]  W. Tiller,et al.  A Structural Study of the Compound AgSbTe2 , 1960 .

[10]  F. D. Rosi,et al.  Semiconductor materials for thermoelectric power generation up to 700 C , 1960, Electrical Engineering.

[11]  R. Hall An analysis of the performance of thermoelectric devices made from long-lifetime semiconductors , 1961 .

[12]  Peter L. Balise,et al.  The Dynamic Behavior of Thermoelectric Devices , 1961 .

[13]  J. Tauc,et al.  Photo and thermoelectric effects in semiconductors , 1962 .

[14]  T. Irie,et al.  The Thermoelectric Properties of AgSbTe2–AgBiTe2, AgSbTe2–PbTe and–SnTe Systems , 1963 .

[15]  C. F. Gallo,et al.  Transport Properties of Bismuth Single Crystals , 1963 .

[16]  John L. Moll,et al.  Physics of Semiconductors , 1964 .

[17]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[18]  R. Dalven A review of the semiconductor properties of PbTe, PbSe, PbS and PbO , 1969 .

[19]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[20]  B. A. Efimova,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides II. Experiment , 1971 .

[21]  J. Issi,et al.  Electron and hole transport in bismuth , 1972 .

[22]  R. Granger,et al.  High temperature superconducting behaviour in PbTePb system , 1973 .

[23]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[24]  J. Heremans,et al.  Electron scattering in compensated bismuth , 1976 .

[25]  O. Johansen Thermal Conductivity of Soils , 1977 .

[26]  M. Skove,et al.  The Field Effect and Magnetoresistance in Small Bismuth Wires , 1977 .

[27]  H. Preier Recent advances in lead-chalcogenide diode lasers , 1979 .

[28]  J. Heremans,et al.  Influence of non-parabolicity on intravalley electron-phonon scattering; the case of bismuth , 1979 .

[29]  Brant C. White,et al.  United States patent , 1985 .

[30]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[31]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[32]  Giordano,et al.  Localization and electron-electron interaction effects in thin Bi wires and films. , 1988, Physical review. B, Condensed matter.

[33]  Proetto Thermopower oscillations of a quantum-point contact. , 1991, Physical review. B, Condensed matter.

[34]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[35]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[36]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[37]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[38]  Chen,et al.  Low-temperature transport properties of p-type CoSb3. , 1995, Physical review. B, Condensed matter.

[39]  H. Scherrer,et al.  Transport properties of Bi-rich Bi-Sb alloys , 1996 .

[40]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[41]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[42]  A. Borshchevsky,et al.  High figure of merit in Ce-filled skutterudites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[43]  D. Ritchie,et al.  Thermoelectric signature of the excitation spectrum of a quantum dot , 1997 .

[44]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[45]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[46]  Takaaki Koga,et al.  Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices , 1998 .

[47]  Gerald D. Mahan,et al.  Multilayer Thermionic Refrigeration , 1998 .

[48]  Magnus Willander,et al.  Modelling and design of quantum dot cellular automata , 1998 .

[49]  Donald T. Morelli,et al.  Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization , 1998 .

[50]  Joseph P. Heremans,et al.  Thermoelectric power of bismuth nanowires , 1999 .

[51]  A. Lambrecht,et al.  Epitaxial Growth and Thermoelectric Properties of Bi 2 Te 3 Based Low Dimensional Structures , 2000 .

[52]  M. Dresselhaus,et al.  Experimental proof-of-principle investigation of enhanced Z[sub 3D]T in (001) oriented Si/Ge superlattices , 2000 .

[53]  Holy,et al.  Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices , 2000, Physical review letters.

[54]  P. J. Taylor,et al.  Thermoelectric quantum-dot superlattices with high ZT , 2000 .

[55]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[56]  M. Dresselhaus,et al.  Electronic transport properties of single-crystal bismuth nanowire arrays , 2000 .

[57]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[58]  A. Casian,et al.  Thermoelectric properties of n-type PbTe/Pb 1-x Eu x Te quantum wells , 2000 .

[59]  Yu-Ming Lin,et al.  Bismuth nanowire arrays: Synthesis and galvanomagnetic properties , 2000 .

[60]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[61]  T. L. Reinecke,et al.  Theory of thermoelectric power factor in quantum well and quantum wire superlattices , 2001 .

[62]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[63]  C. M. Thrush,et al.  Transport properties of antimony nanowires , 2001 .

[64]  Andrew G. Glen,et al.  APPL , 2001 .

[65]  Yu-Ming Lin,et al.  Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment , 2001 .

[66]  M. Dresselhaus,et al.  Transport properties of Bi1−xSbx alloy nanowires synthesized by pressure injection , 2001 .

[67]  D. Broido,et al.  Chapter 2 - Thermoelectric Transport in Quantum Well and Quantum Wire Superlattices , 2001 .

[68]  Microstructure and Electrical Properties of PbTe Based Films Prepared by Pulsed Laser Deposition , 2001 .

[69]  A. Lambrecht,et al.  PbTe based superlattice structures with high thermoelectric efficiency , 2002 .

[70]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[71]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[72]  Joachim Nurnus,et al.  High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity , 2002 .

[73]  Yu-Ming Lin,et al.  Semimetal–semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties , 2002 .

[74]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[75]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[76]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[77]  H. Zogg,et al.  Self-assembled semiconductor quantum dots with nearly uniform sizes. , 2003, Physical review letters.

[78]  Li Shi,et al.  Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes , 2003 .

[79]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[80]  C. M. Thrush,et al.  Resistance, magnetoresistance, and thermopower of zinc nanowire composites. , 2003, Physical review letters.

[81]  S. G. Lyubchenko,et al.  Quantum-size effects in n-type bismuth thin films , 2003 .

[82]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[83]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[84]  Li Shi,et al.  Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution , 2004, Science.

[85]  O. Rabin Bismuth nanowire and antidot array studies motivated by thermoelectricity , 2004 .

[86]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[87]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[88]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[89]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .