Packing density, permeability, and separation efficiency of packed microchips at different particle-aspect ratios.

HPLC microchips are investigated experimentally with respect to packing density, pressure drop-flow rate relation, hydraulic permeability, and separation efficiency. The prototype microchips provide minimal dead volume, on-chip UV detection, and a 75 mm long separation channel with a ca. 50 microm x 75 microm trapezoidal cross-section. A custom-built stainless-steel holder allowed to adopt optimized packing conditions. Separation channels were slurry-packed with 3, 5, and 10 microm-sized spherical, porous C8-silica particles. Differences in interparticle porosity, permeability, and plate height data are analyzed and consistently explained by different microchannel-to-particle size (particle-aspect) ratios and particle size distributions.

[1]  Keqi Tang,et al.  Ultrasensitive and quantitative analyses from combined separations-mass spectrometry for the characterization of proteomes. , 2004, Accounts of chemical research.

[2]  D. Vortmeyer,et al.  Measured and modeled superficial flow profiles in packed beds with liquid flow , 1998 .

[3]  G. Guiochon,et al.  Study of physico-chemical properties of some packing materials: I. Measurements of the external porosity of packed columns by inverse size-exclusion chromatography , 1996 .

[4]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[5]  G. Guiochon,et al.  Study of Dispersion in Packed Chromatographic Columns by Pulsed Field Gradient Nuclear Magnetic Resonance , 1998 .

[6]  D. Knapp,et al.  Monolithic column plastic microfluidic device for peptide analysis using electrospray from a channel opening on the edge of the device , 2007 .

[7]  A. Ishida,et al.  Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column. , 2006, Journal of chromatography. A.

[8]  I. Halasz,et al.  Pore Sizes of Solids , 1978 .

[9]  H. Stone,et al.  Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. , 2006, Analytical chemistry.

[10]  C. Cramers,et al.  Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography , 1995 .

[11]  J. Jorgenson,et al.  Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 μm , 1996 .

[12]  Yongcheng Li,et al.  Permeability of Packed Beds Filled with Polydisperse Spherical Particles , 1998 .

[13]  Y. Tai,et al.  On-chip temperature gradient interaction chromatography. , 2006, Journal of chromatography. A.

[14]  H. Terryn,et al.  Kinetic plot and particle size distribution analysis to discuss the performance limits of sub-2 microm and supra-2 microm particle columns. , 2008, Journal of chromatography. A.

[15]  Sebastiaan Eeltink,et al.  Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. , 2008, Journal of chromatography. A.

[16]  Salvatore Fanali,et al.  Recent applications in nanoliquid chromatography. , 2007, Journal of separation science.

[17]  Yu-Chong Tai,et al.  Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. , 2005, Analytical chemistry.

[18]  A. Höltzel,et al.  Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings. , 2007, Analytical chemistry.

[19]  P. Carr,et al.  Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. , 1997, Analytical chemistry.

[20]  M. Novotny,et al.  Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters. , 1988, Analytical chemistry.

[21]  Majid Bahrami,et al.  A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section , 2007 .

[22]  Iulia M Lazar,et al.  Microfluidic liquid chromatography system for proteomic applications and biomarker screening. , 2006, Analytical chemistry.

[23]  T. Shepodd,et al.  Microchip HPLC of peptides and proteins. , 2005, Analytical chemistry.

[24]  A G Hoekstra,et al.  Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media. , 2002, Physical review letters.

[25]  H. Poppe,et al.  Mass transfer in rectangular chromatographic channels. , 2002, Journal of chromatography. A.

[26]  H. Terryn,et al.  Detailed characterisation of the flow resistance of commercial sub-2 μm reversed-phase columns , 2008 .

[27]  K. Killeen,et al.  An experimental study of chromatographic dynamics in open and packed non-cylindrical conduits. , 2004, Journal of separation science.

[28]  U. Neue HPLC Columns: Theory, Technology, and Practice , 1997 .

[29]  L. G. Gibilaro,et al.  Wall effects for the pressure drop in fixed beds , 2004 .

[30]  Armand Ajdari,et al.  Experimental characterization of hydrodynamic dispersion in shallow microchannels. , 2006, Lab on a chip.

[31]  C. Horváth,et al.  High-Performance Liquid Chromatography: Advances and Perspectives , 1980 .

[32]  Jacob H. Masliyah,et al.  Influence of cross-section geometry on band broadening in plug-flow microchannels , 2006 .

[33]  J. Veuthey,et al.  Relation between the particle size distribution and the kinetic performance of packed columns. Application to a commercial sub-2 microm particle material. , 2007, Journal of chromatography. A.

[34]  Ulrich Tallarek,et al.  Transition from creeping via viscous-inertial to turbulent flow in fixed beds. , 2006, Journal of chromatography. A.

[35]  A. Striegel,et al.  Modern size-exclusion liquid chromatography , 1979 .

[36]  R. Maier,et al.  Diameter‐dependent dispersion in packed cylinders , 2007 .

[37]  E. Ibáñez,et al.  Low aspect ratio packed capillary columns in supercritical fluid chromatography , 1996 .

[38]  F. Gomez,et al.  Fabrication of fritless chromatographic microchips packed with conventional reversed-phase silica particles. , 2007, Analytical chemistry.

[39]  Steve Arscott,et al.  Integrated microfabricated systems including a purification module and an on-chip nano electrospray ionization interface for biological analysis. , 2005, Journal of chromatography. A.

[40]  U. Tallarek,et al.  Separation efficiency of particle-packed HPLC microchips. , 2008, Analytical chemistry.

[41]  D. Knapp,et al.  Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. , 2006, Journal of chromatography. A.

[42]  H. Yin,et al.  Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. , 2005, Analytical chemistry.

[43]  R. Maier,et al.  Hydrodynamic dispersion in confined packed beds , 2003 .

[44]  J. Jorgenson,et al.  Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 μm , 1989 .

[45]  K. Schnitzlein,et al.  The influence of confining walls on the pressure drop in packed beds , 2001 .

[46]  Arno de Klerk,et al.  Voidage variation in packed beds at small column to particle diameter ratio , 2003 .

[47]  E. Verpoorte,et al.  A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. , 2007, Lab on a chip.

[48]  G. Desmet,et al.  Optimum kinetic performance of open-tubular separations in microfluidic devices. , 2007, Journal of separation science.

[49]  P. Carman,et al.  Flow of gases through porous media , 1956 .

[50]  M. Marina,et al.  Application of micro- and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. , 2008, Journal of separation science.

[51]  Evangelos Tsotsas,et al.  Impact of tube-to-particle-diameter ratio on pressure drop in packed beds , 2000 .

[52]  Debashis Dutta,et al.  Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems , 2006 .

[53]  Frantisek Svec,et al.  Injection molded microfluidic chips featuring integrated interconnects. , 2006, Lab on a chip.

[54]  Andreas Seidel-Morgenstern,et al.  Structure-transport analysis for particulate packings in trapezoidal microchip separation channels. , 2008, Lab on a chip.

[55]  P. Schoenmakers,et al.  Study of the influence of the aspect ratio on efficiency, flow resistance and retention factors of packed capillary columns in pressure- and electrically-driven liquid chromatography. , 2004, Journal of chromatography. A.

[56]  Jun Kameoka,et al.  A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. , 2005, Lab on a chip.

[57]  U. Tallarek,et al.  Packing density of slurry-packed capillaries at low aspect ratios. , 2008, Journal of separation science.