Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring.

Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies.

[1]  Kyung Rim Sung,et al.  Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. , 2009, Archives of ophthalmology.

[2]  R. Knighton,et al.  Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. , 2005, Investigative ophthalmology & visual science.

[3]  G. Wollstein,et al.  Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.

[4]  J. Beiser,et al.  Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. , 2005, Archives of ophthalmology.

[5]  R. Susanna,et al.  Comparison of Quantitative Imaging Devices and Subjective Optic Nerve Head Assessment by General Ophthalmologists to Differentiate Normal From Glaucomatous Eyes , 2008, Journal of glaucoma.

[6]  Valter Torri,et al.  European Glaucoma Prevention Study: Author reply , 2005 .

[7]  N. Swindale,et al.  Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.

[8]  G. Ravalico,et al.  Scanning laser polarimetry with variable corneal compensation and detection of glaucomatous optic neuropathy , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[9]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[10]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[11]  F. Medeiros,et al.  Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. , 2010, American journal of ophthalmology.

[12]  L. Zangwill,et al.  Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. , 1995, American journal of ophthalmology.

[13]  Giuseppe Di Stefano,et al.  GDx-VCC performance in discriminating normal from glaucomatous eyes with early visual field loss , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[14]  Robert N Weinreb,et al.  Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry. , 2002, American journal of ophthalmology.

[15]  B C Chauhan,et al.  Test-retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. , 1994, American journal of ophthalmology.

[16]  H. Lemij,et al.  Reproducibility of Measurements With the Nerve Fiber Analyzer (NFA/GDx) , 2000, Journal of glaucoma.

[17]  Joel S Schuman,et al.  Spectral domain optical coherence tomography for glaucoma (an AOS thesis). , 2008, Transactions of the American Ophthalmological Society.

[18]  R N Weinreb,et al.  Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. , 1991, American journal of ophthalmology.

[19]  J. Folch,et al.  Reproducibility of Peripapillary Retinal Nerve Fiber Thickness Measurements with Stratus OCT in Glaucomatous Eyes , 2008 .

[20]  W. Feuer,et al.  Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. , 2007, American journal of ophthalmology.

[21]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[22]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[23]  C. Cheung,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. , 2010, Ophthalmology.

[24]  Mauro Vavassori,et al.  Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. , 2003, American journal of ophthalmology.

[25]  G Zinser,et al.  Reproducibility of topographic measurements of the optic nerve head with laser tomographic scanning. , 1989, Ophthalmology.

[26]  G. Holló,et al.  Scanning laser polarimetry of the retinal nerve fibre layer in primary open angle and capsular glaucoma , 1997, The British journal of ophthalmology.

[27]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[28]  G. Wollstein,et al.  Glaucoma detection with the Heidelberg retina tomograph 3. , 2007, Ophthalmology.

[29]  K. Sung,et al.  Reproducibility of scanning laser polarimetry (GDx) of peripapillary retinal nerve fiber layer thickness in normal subjects , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[30]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[31]  Nicholas G Strouthidis,et al.  Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis. , 2007, Ophthalmology.

[32]  R. Knighton,et al.  Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry. , 2002, Ophthalmology.

[33]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[34]  James G. Fujimoto,et al.  Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography , 2009, British Journal of Ophthalmology.

[35]  Jeffrey M. Liebmann,et al.  Macular and Retinal Nerve Fiber Layer Thickness Measurement Reproducibility Using Optical Coherence Tomography (OCT-3) , 2003, Journal of glaucoma.

[36]  L. Zangwill,et al.  Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. , 2003, Archives of ophthalmology.

[37]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[38]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[39]  G. Holló,et al.  Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. , 2010, Ophthalmology.

[40]  R Varma,et al.  Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. , 1994, Ophthalmology.

[41]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[42]  L. Zangwill,et al.  Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.

[43]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[44]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[45]  L. Zangwill,et al.  Reproducibility of Retardation Measurements with the Nerve Fiber Analyzer II , 1997, Journal of glaucoma.

[46]  J. D. Cascajosa,et al.  Diagnostic Ability of Fourier-Domain vs Time-Domain Optical Coherence Tomography for Glaucoma Detection , 2010 .

[47]  Douglas R. Anderson,et al.  Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. , 2008, Ophthalmology.

[48]  L. Zangwill,et al.  Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. , 2000, Ophthalmology.

[49]  D. Kourkoutas,et al.  Comparison of glaucoma progression evaluated with Heidelberg retina tomograph II versus optic nerve head stereophotographs. , 2007, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[50]  Robert N Weinreb,et al.  Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. , 2009, Optics express.

[51]  J. Katz,et al.  Sensitivity and specificity of the StratusOCT for perimetric glaucoma. , 2005, Ophthalmology.

[52]  L. Zangwill,et al.  Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. , 2001, Investigative ophthalmology & visual science.

[53]  S. Miglior,et al.  Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes. , 2001, Ophthalmology.

[54]  N. Swindale,et al.  Ability of the Heidelberg Retina Tomograph to Detect Early Glaucomatous Visual Field Loss , 1995, Journal of glaucoma.

[55]  Robert N. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. , 2010, Ophthalmology.

[56]  H. Quigley,et al.  Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. , 1980, Archives of ophthalmology.

[57]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[58]  F. Medeiros,et al.  Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. , 2007, Investigative ophthalmology & visual science.

[59]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[60]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[61]  G. Wollstein,et al.  Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. , 2004, Investigative ophthalmology & visual science.

[62]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[63]  P A Sample,et al.  Detection of early glaucomatous structural damage with confocal scanning laser tomography. , 1998, Journal of glaucoma.

[64]  H. Lemij,et al.  Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter. , 2004, Ophthalmology.

[65]  Dong Myung Kim,et al.  Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. , 2009, Investigative ophthalmology & visual science.

[66]  B C Chauhan,et al.  Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. , 2001, Archives of ophthalmology.

[67]  Hans G Lemij,et al.  Diagnostic accuracy of the GDx VCC for glaucoma. , 2004, Ophthalmology.

[68]  R Ritch,et al.  Peripapillary Nerve Fiber Layer Thickness Measurement Reproducibility Using Scanning Laser Polarimetry , 1998, Journal of glaucoma.

[69]  G. Wollstein,et al.  Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. , 2000, Ophthalmology.

[70]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[71]  Douglas Hoffman,et al.  Identifying early glaucoma with optical coherence tomography. , 2003, American journal of ophthalmology.

[72]  Robert N Weinreb,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. , 2011, Ophthalmology.

[73]  Christian Y Mardin,et al.  Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. , 2009, Investigative ophthalmology & visual science.