Approximation and decomposition properties of some classes of locally D.C. functions

We study the connexion between local and global decompositions of some important subclasses of locally d.c. functions (functions which locally split as a difference of two convex functions). Then we tackle the problem of regularizing such functions by the Moreau-Yosida process and prove in particular that the class of lower-C2 functions fits well this approximation procedure.

[1]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[2]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[3]  E. Asplund Fréchet differentiability of convex functions , 1968 .

[4]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[5]  P. Michel Problème des inégalités. Applications à la programmation et au contrôle optimal , 1973 .

[6]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[7]  R. Holmes Smoothness of certain metric projections on Hilbert space , 1973 .

[8]  D. Wexler Prox-mappings associated with a pair of Legendre conjugate functions , 1973 .

[9]  C. V. Hinkle Generalized semigroups of quotients , 1973 .

[10]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[11]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[12]  R. Temam,et al.  Nonconvex Optimization Problems Depending on a Parameter , 1975 .

[13]  W. A. Kirk Caristi's fixed point theorem and metric convexity , 1976 .

[14]  I. Ekeland,et al.  Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces , 1976 .

[15]  Christian Malivert Méthode de descente sur un fermé non convexe , 1979 .

[16]  D. Bertsekas Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .

[17]  I. Ekeland,et al.  On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface , 1980 .

[18]  J. Hiriart-Urruty Extension of Lipschitz functions , 1980 .

[19]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[20]  J. Spingarn Submonotone subdifferentials of Lipschitz functions , 1981 .

[21]  J. Spingarn Submonotone mappings and the proximal point algorithm , 1982 .

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  Jean-Philippe Vial,et al.  Strong and Weak Convexity of Sets and Functions , 1983, Math. Oper. Res..

[24]  H. Attouch Variational convergence for functions and operators , 1984 .

[25]  R. Rockafellar,et al.  Variational systems, an introduction , 1984 .

[26]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[27]  B. Lacolle Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités , 1985 .

[28]  Y. Yomdin On functions representable as a supremum of a family of smooth functions II , 1986 .

[29]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .