Virtual facial reconstruction based on accurate registration and fusion of 3D facial and MSCT scans

ObjectivesAccurate registration and feasible fusion of a three-dimensional (3D) photorealistic surface images (captured using the FaceSCAN3D® Scientific Photo Lab) from multislice spiral computed tomography (MSCT) images is important to achieve optimal craniomaxillofacial surgery outcomes; thus, the aim of this work was to optimize this process.MethodsMSCT and 3D facial scans were acquired from 37 randomly selected patients. Using the Invesalius software package, skin and bone tissue models were reconstructed. The 3D photorealistic surface images were then constructed. Four image registration processes were performed using Geomagic Studio software: manual Procrustes and semi-automatic registration (global modified ICP) using both 7 and 15 anthropometric landmarks. The statistical differences were assessed using one-way ANOVA and LSD tests. P values <0.05 were considered significant.ResultsAverage distances between these two surfaces measured 0.99 (SD 0.13 mm), 0.77 (SD 0.11 mm), 0.99 (SD 0.15 mm), and 0.77 mm (SD 0.10 mm) via the four image registration methods. Statistical differences were observed between the manual and semi-automatic registration groups (according to 7 and 15 anthropometric landmarks, respectively). Image registration errors for the entire virtual face were <0.8 mm in the semi-automatic registration groups.ConclusionEmploying the Procrustes registration system using seven anthropometric landmarks together with global registration allows accurate registration and feasible fusion of 3D facial scans with reconstructed 3D MSCT image data.ZusammenfassungZieleDer Prozess der genauen Registrierung und der praktikablen Fusion von fotorealistischen 3-D-Oberflächenbildern (FaceSCAN3D® Scientific Photo Lab) mit MSCT(“multislice spiral computed tomography”)-Bilddatensätzen ist von hoher Relevanz für optimale Ergebnisse bei kraniomaxillofazialen operativen Interventionen. Daher war es Ziel der Arbeit, diesen Prozess zu optimieren.MethodenVon 37 randomisiert ausgewählten Patienten wurden MSCT- und 3-D-Gesichtsscans erstellt. Mit der Software InVesalius wurden Haut- und Knochenmodelle rekonstruiert. Die fotorealistischen 3-D-Oberflächenbilder wurden rekonstruiert. Mit der Software Geomagic Studio wurden 4 Registrierungsprozesse vorgenommen: manuelle Prokrustes- und semiautomatische Registrierung (“global modified ICP”, Iterative Closest Point) unter Verwendung von sowohl 7 als auch 15 anthropometrischen Landmarken. Statistische Unterschiede wurden mit dem Ein-Wege-ANOVA(“analysis of variance”)- und dem LSD (“least significant difference”)-Test ermittelt. Als signifikant definiert wurden p-Werte <0,05.ErgebnisseDie durchschnittlichen Entfernungen zwischen den 2 gemessenen Oberflächen lagen bei 0,99 (SD 0,13 mm), 0,77 (SD 0,11 mm), 0,99 (SD 0,15 mm) und 0,77 mm (SD 0,10 mm) bei den 4 eingesetzten Bildregistrierungsmethoden. Zu beobachten waren statistische Unterschiede zwischen den Gruppen mit manueller und semiautomatischer Registrierung (an 7 bzw. 15 anthropometrischen Landmarken). Die Registrierungsfehler für das gesamte virtuelle Gesicht waren in den semiautomatischen Registrierungsgruppen geringer als 0,8 mm.SchlussfolgerungenDas Prokrustes-Registrierungssystem mit 7 anthropometrischen Landmarken ermöglicht in Verbindung mit einer globalen Registrierung die genaue Registrierung und machbare Fusion dreidimensionaler Gesichtsscans mit rekonstruierten 3-D-MSCT-Bilddaten.

[1]  Michael R Markiewicz,et al.  Computer-aided orthognathic surgery. , 2012, Atlas of the oral and maxillofacial surgery clinics of North America.

[2]  Ryan Winters,et al.  Virtual Surgical Planning in Complex Composite Maxillofacial Reconstruction , 2013, Plastic and reconstructive surgery.

[3]  William R Proffit,et al.  Working with DICOM craniofacial images. , 2009, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[4]  A F Ayoub,et al.  Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning. , 2007, International journal of oral and maxillofacial surgery.

[5]  Stephen Richmond,et al.  New Developments in: Three‐dimensional Planning for Orthognathic Surgery , 2010, Journal of orthodontics.

[6]  Anne Marie Kuijpers-Jagtman,et al.  Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. , 2011, International journal of oral and maxillofacial surgery.

[7]  Erwin Keeve,et al.  Virtual planning for craniomaxillofacial surgery--7 years of experience. , 2014, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[8]  T. Shibata,et al.  Generation of virtual models for planning orthognathic surgery using a modified multimodal image fusion technique. , 2015, International journal of oral and maxillofacial surgery.

[9]  Christopher Lane,et al.  Image fusion in preoperative planning. , 2011, Facial plastic surgery clinics of North America.

[10]  Jin-Hyoung Cho,et al.  Registration accuracy in the integration of laser-scanned dental images into maxillofacial cone-beam computed tomography images. , 2011, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[11]  Venu Madhav Govindu,et al.  On Averaging Multiview Relations for 3D Scan Registration , 2014, IEEE Transactions on Image Processing.

[12]  Roger A. Zwahlen,et al.  How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images? , 2012, PloS one.

[13]  X Ju,et al.  The virtual human face: superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. , 2013, International journal of oral and maxillofacial surgery.

[14]  Russell H. Taylor,et al.  Iterative Most Likely Oriented Point Registration , 2014, MICCAI.

[15]  Yanling Hu,et al.  Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data. , 2011, Injury.

[16]  Andrej Terzic,et al.  Précision des prédictions morphologiques en chirurgie orthognathique. Évaluation d’un procédé de fusion d’images 3D , 2013 .

[17]  Jean-Christophe Nebel,et al.  3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study. , 2002, The International journal of adult orthodontics and orthognathic surgery.

[18]  T Schouman,et al.  [Accuracy of morphological simulation for orthognatic surgery. Assessment of a 3D image fusion software]. , 2013, Revue de stomatologie, de chirurgie maxillo-faciale et de chirurgie orale.

[19]  Jeongjin Lee,et al.  Accurate registration of cone-beam computed tomography scans to 3-dimensional facial photographs. , 2014, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[20]  C. Tzou,et al.  Evolution of 3D surface imaging systems in facial plastic surgery. , 2011, Facial plastic surgery clinics of North America.