Covariance and State Estimation of Weakly Observable Systems: Application to Polymerization Processes
暂无分享,去创建一个
Fernando V. Lima | James B. Rawlings | Tyler A. Soderstrom | Murali R. Rajamani | Tyler A. Soderstrom | J. Rawlings | F. Lima | M. R. Rajamani
[1] Panagiotis D. Christofides,et al. Fault-tolerant control of a polyethylene reactor , 2007 .
[2] P. Mhaskar,et al. Fault-tolerant control of a polyethylene reactor , 2006, 2006 American Control Conference.
[3] Willi-Hans Steeb,et al. Kronecker product of matrices and applications , 1991 .
[4] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[5] Jay H. Lee,et al. A moving horizon‐based approach for least‐squares estimation , 1996 .
[6] Jay A. Farrell,et al. Aided Navigation: GPS with High Rate Sensors , 2008 .
[7] Bruce A. Francis,et al. The internal model principle of control theory , 1976, Autom..
[8] D. G. Watts,et al. Spectral analysis and its applications , 1968 .
[9] A. Krener,et al. Nonlinear controllability and observability , 1977 .
[10] James B. Rawlings,et al. A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..
[11] Giorgio Battistelli,et al. Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..
[12] Sten Bay Jørgensen,et al. Parameter estimation in stochastic grey-box models , 2004, Autom..
[13] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[14] Murali R. Rajamani,et al. Data-based Techniques to Improve State Estimation in Model Predictive Control , 2007 .
[15] Fernando V. Lima,et al. Nonlinear stochastic modeling to improve state estimation in process monitoring and control , 2011 .
[16] A. C. Aitken. IV.—On Least Squares and Linear Combination of Observations , 1936 .
[17] W. Brogan. Modern Control Theory , 1971 .
[18] James B. Rawlings,et al. Estimation of the disturbance structure from data using semidefinite programming and optimal weighting , 2009, Autom..
[19] J. Farrell,et al. The global positioning system and inertial navigation , 1999 .
[20] David Q. Mayne,et al. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..
[21] C. V. Rao,et al. Constrained process monitoring: Moving‐horizon approach , 2002 .
[22] G. Goodwin,et al. Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices , 1986 .
[23] Jay H. Lee,et al. On the use of constraints in least squares estimation and control , 2002, Autom..
[24] James B. Rawlings,et al. Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..
[25] James B. Rawlings,et al. The autocovariance least-squares method for estimating covariances: application to model-based control of chemical reactors , 2006, IEEE Transactions on Control Systems Technology.
[26] M. L. Bell,et al. Temperature control of industrial gas phase polyethylene reactors , 1997 .
[27] Richard A. Brown,et al. Introduction to random signals and applied kalman filtering (3rd ed , 2012 .
[28] Alexander Graham,et al. Kronecker Products and Matrix Calculus: With Applications , 1981 .
[29] James B. Rawlings,et al. Achieving state estimation equivalence for misassigned disturbances in offset‐free model predictive control , 2009 .
[30] S. F. Schmidt,et al. Application of State-Space Methods to Navigation Problems , 1966 .
[31] W. Wonham,et al. The internal model principle for linear multivariable regulators , 1975 .
[32] J. Macgregor,et al. A kinetic model for industrial gas-phase ethylene copolymerization , 1990 .
[33] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .
[34] Gabriele Pannocchia,et al. Disturbance models for offset‐free model‐predictive control , 2003 .