Geodesic active contour under geometrical conditions: theory and 3D applications

In this paper, we propose a new scheme for both detection of boundaries and fitting of geometrical data based on a geometrical partial differential equation, which allows a rigorous mathematical analysis. The model is a geodesic-active-contour-based model, in which we are trying to determine a curve that best approaches the given geometrical conditions (for instance a set of points or curves to approach) while detecting the object under consideration. Formal results concerning existence, uniqueness (viscosity solution) and stability are presented as well. We give the discretization of the method using an additive operator splitting scheme which is very efficient for this kind of problem. We also give 2D and 3D numerical examples on real data sets.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[3]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[4]  Luminita A. Vese,et al.  Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods , 2005, Numerical Algorithms.

[5]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[6]  Guy Barles,et al.  A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions , 2003 .

[7]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[8]  Lee Belbin,et al.  Fuse: A FORTRAN V program for agglomerative fusion for minicomputers , 1984 .

[9]  C. L. Guyader,et al.  Segmentation of complex geophysical structures with well data , 2006 .

[10]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[11]  P. Lions,et al.  Shape-from-shading, viscosity solutions and edges , 1993 .

[12]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[13]  Yoshikazu Giga,et al.  A LEVEL SET APPROACH TO SEMICONTINUOUS VISCOSITY SOLUTIONS FOR CAUCHY PROBLEMS , 1999 .

[14]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[15]  L. Vese,et al.  An efficient variational multiphase motion for the Mumford-Shah segmentation model , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[16]  G. Barles Nonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications , 1999 .

[17]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  Christian Gout,et al.  An Algorithm For Segmentation Under Interpolation Conditions Using Deformable Models , 2003, Int. J. Comput. Math..

[19]  Ajustement spline le long d'un ensemble de courbes , 1991 .

[20]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[21]  Caroline Guyader Imagerie Mathématique: segmentation sous contraintes géométriques ~ Théorie et Applications , 2004 .

[22]  Tony F. Chan,et al.  Variational PDE models in image processing , 2002 .

[23]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[24]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[25]  Christian Gout,et al.  Using a level set approach for image segmentation under interpolation conditions , 2005, Numerical Algorithms.

[26]  Dimitri Komatitsch,et al.  A New Method for Ck-Surface Approximation from a Set of Curves, with Application to Ship Track Data in the Marianas Trench , 2002 .

[27]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[28]  J. Weickert,et al.  Fast Methods for Implicit Active Contour Models , 2003 .

[29]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[30]  V. Caselles,et al.  Snakes in Movement , 1996 .

[31]  C. M. Elliott,et al.  Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities , 2004 .

[32]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[33]  Sergei Petrovich Novikov,et al.  The geometry of surfaces, transformation groups, and fields , 1984 .

[34]  T. Meis,et al.  Numerische Behandlung partieller Differentialgleichungen , 1978 .

[35]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[36]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[37]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[38]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[39]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[40]  Vicent Caselles,et al.  What is the Best Causal Scale Space for Three-Dimensional Images? , 1996, SIAM J. Appl. Math..

[41]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[42]  M. Kocan Approximation of viscosity solutions of elliptic partial differential equations on minimal grids , 1995 .

[43]  Luminita A. Vese,et al.  Self-Repelling Snakes for Topology-Preserving Segmentation Models , 2008, IEEE Transactions on Image Processing.

[44]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[45]  Y. Giga,et al.  Generalized interface evolution with the Neumann boundary condition , 1991 .

[46]  F. Tony,et al.  A multiphase level set framework for image segmentation using theMumford and Shah modelLuminita , 2001 .

[47]  Christian Gout,et al.  Ck surface approximation from surface patches , 2002 .

[48]  Dimitri Komatitsch,et al.  Surface Fitting of Rapidly Varying Data Using Rank Coding: Application to Geophysical Surfaces , 2000 .

[49]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[50]  P. Cardaliaguet,et al.  Existence and uniqueness for dislocation dynamics with nonnegative velocity , 2005 .

[51]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[52]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[53]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[54]  Christian Gout,et al.  Segmentation of medical image sequence under constraints: application to non-invasive assessment of pulmonary arterial hypertension , 2004, Int. J. Comput. Math..

[55]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[56]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[57]  Hitoshi Ishii,et al.  Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain , 2004 .

[58]  Yoshikazu Giga,et al.  A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations , 2003, Math. Comput..