Obstacle Detection and Tracking for the Urban Challenge

This paper describes the obstacle detection and tracking algorithms developed for Boss, which is Carnegie Mellon University 's winning entry in the 2007 DARPA Urban Challenge. We describe the tracking subsystem and show how it functions in the context of the larger perception system. The tracking subsystem gives the robot the ability to understand complex scenarios of urban driving to safely operate in the proximity of other vehicles. The tracking system fuses sensor data from more than a dozen sensors with additional information about the environment to generate a coherent situational model. A novel multiple-model approach is used to track the objects based on the quality of the sensor data. Finally, the architecture of the tracking subsystem explicitly abstracts each of the levels of processing. The subsystem can easily be extended by adding new sensors and validation algorithms.

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  Christopher R. Baker,et al.  A reasoning framework for autonomous urban driving , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[3]  Frank Dellaert,et al.  Model-based car tracking integrated with a road-follower , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Ingemar J. Cox,et al.  An efficient implementation and evaluation of Reid's multiple hypothesis tracking algorithm for visual tracking , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[5]  Osama Masoud,et al.  Detection and classification of vehicles , 2002, IEEE Trans. Intell. Transp. Syst..

[6]  K.C.J. Dietmayer,et al.  IMM object tracking for high dynamic driving maneuvers , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[7]  Y. Bar-Shalom,et al.  Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm , 1989 .

[8]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[9]  William Whittaker,et al.  A robust approach to high‐speed navigation for unrehearsed desert terrain , 2006, J. Field Robotics.

[10]  Paul E. Rybski,et al.  An Adaptive Model Switching Approach for a Multisensor Tracking System used for Autonomous Driving in an Urban Environment , 2008 .

[11]  A. Kirchner,et al.  Integrated obstacle and road tracking using a laser scanner , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[12]  D. Streller,et al.  Vehicle and object models for robust tracking in traffic scenes using laser range images , 2002, Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems.

[13]  Robert A. MacLachlan,et al.  Tracking of Moving Objects from a Moving Vehicle Using a Scanning Laser Rangefinder , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[14]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Robert A. MacLachlan,et al.  Tracking Moving Objects From a Moving Vehicle Using a Laser Scanner , 2006 .

[16]  R. Mobus,et al.  Multi-target multi-object tracking, sensor fusion of radar and infrared , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[17]  Ivar Jacobson,et al.  The Unified Software Development Process , 1999 .

[18]  C. Urmson,et al.  Classification and tracking of dynamic objects with multiple sensors for autonomous driving in urban environments , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[19]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[20]  C. Urmson,et al.  Vehicle Detection and Tracking for the Urban Challenge , 2008 .

[21]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[22]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[23]  Michael Darms Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren für Fahrerassistenzsysteme , 2007 .

[24]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[25]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[26]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[27]  William Whittaker,et al.  A robust approach to high‐speed navigation for unrehearsed desert terrain , 2007 .

[28]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[29]  Richard Bishop,et al.  Intelligent Vehicle Technology and Trends , 2005 .

[30]  Yong-Hoon Kim,et al.  An efficient multitarget tracking algorithm for car applications , 2003, IEEE Trans. Ind. Electron..

[31]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .