Colorimetric sensing and anion recognition by Kalanchoe flower-like ligand and its transition metal complexes with polarized N-H interaction motifs

[1]  N. Kaur,et al.  Chemodosimeters for optical detection of fluoride anion , 2020 .

[2]  Boosayarat Tomapatanaget,et al.  Colorimetric N-butyl-3,6-diamidecarbazole-based chemosensors for detection of fluoride and cyanide anions. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  A. Guha,et al.  Selective detection of fluoride via amplified donor-acceptor interaction of 6H-indolo[2,3-b]quinoline. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  C. Parthiban,et al.  Studies on the interaction of mononuclear metal(II) complexes of amino‑naphthoquinone with bio-macromolecules. , 2019, Materials science & engineering. C, Materials for biological applications.

[5]  Yuming Zhao,et al.  Pyrenoimidazolyl-Benzaldehyde Fluorophores: Synthesis, Properties, and Sensing Function for Fluoride Anions , 2018, ACS omega.

[6]  Rajiv Trivedi,et al.  Isophorone-boronate ester: A simple chemosensor for optical detection of fluoride anion , 2018, Applied Organometallic Chemistry.

[7]  S. M. Basheer,et al.  Spectrochemical and theoretical approaches for acylhydrazone-based fluoride sensors , 2018, Research on chemical intermediates (Print).

[8]  R. Kannan,et al.  Green synthesis of 1,4-quinone derivatives and evaluation of their fluorescent and electrochemical properties , 2016 .

[9]  M. Torkzadeh-Mahani,et al.  Synthesis, characterization, crystal structure, DNA and BSA binding, molecular docking and in vitro anticancer activities of a mononuclear dioxido-uranium(VI) complex derived from a tridentate ONO aroylhydrazone. , 2016, Journal of photochemistry and photobiology. B, Biology.

[10]  P. Chapuis,et al.  Comparing the Batch and Flow Syntheses of Metal Ammonium Phosphates: A Green Chemistry Approach , 2021, 2110.09781.

[11]  S. Atılgan,et al.  AIE active pyridinium fused tetraphenylethene: Rapid and selective fluorescent “turn-on” sensor for fluoride ion in aqueous media , 2016 .

[12]  H. Bae,et al.  Novel azo dye-based color chemosensors for fluoride ions. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  A. Siva,et al.  Aminobenzohydrazide based colorimetric and 'turn-on' fluorescence chemosensor for selective recognition of fluoride. , 2015, Analytica chimica acta.

[14]  T. He,et al.  A BODIPY derivative for colorimetric and fluorometric sensing of fluoride ion and its logic gates behavior , 2015 .

[15]  T. Nyokong,et al.  Organosilicon compounds as fluorescent chemosensors for fluoride anion recognition , 2015 .

[16]  Annette Fernandez,et al.  Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohydrazide. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  R. Karvembu,et al.  Self-assembled Cu(II) and Ni(II) metallamacrocycles formed from 3,3,3',3'-tetrabenzyl-1,1'-aroylbis(thiourea) ligands: DNA and protein binding studies, and cytotoxicity of trinuclear complexes. , 2014, Dalton transactions.

[18]  K. Elango,et al.  Charge transfer facilitated direct electrophilic substitution in phenylaminonaphthoquinones: experimental, theoretical and electrochemical studies , 2014 .

[19]  N. Abdel‐Kader,et al.  Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  Mark C. Lonergan,et al.  Solution phase n-doping of C60and PCBM using tetrabutylammonium fluoride , 2014 .

[21]  S. Sallam,et al.  Spectral, Magnetic, Thermal, and DNA Interaction of Ni(II) Complexes of Glutamic Acid Schiff Bases , 2013 .

[22]  N. Dharmaraj,et al.  Copper(I) and nickel(II) complexes with 1:1 vs. 1:2 coordination of ferrocenyl hydrazone ligands: do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities? , 2012, Dalton transactions.

[23]  L. Chirigiu,et al.  Novel 2,3-disubstituted 1,4-naphthoquinone derivatives and their metal complexes – Synthesis and in vitro cytotoxic effect against mouse fibrosarcoma L929 cells , 2012 .

[24]  T. Govindaraju,et al.  Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates: selective detection and fluorescence imaging in living cells. , 2011, Chemistry.

[25]  M. Nair,et al.  Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand , 2010 .

[26]  M. P. Kaushik,et al.  Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media. , 2010, Analytica chimica acta.

[27]  R. Verma Anti-cancer activities of 1,4-naphthoquinones: a QSAR study. , 2006, Anti-cancer agents in medicinal chemistry.

[28]  Manuel A. Palacios,et al.  Simple Electrooptical Sensors For Inorganic Anions , 2017 .

[29]  Maria Jose Abad Martinez,et al.  Biological Activity of Quinones , 2005 .

[30]  M. W. Wong,et al.  Fluoride Ion Receptors Based on Dipyrrolyl Derivatives Bearing Electron-Withdrawing Groups: Synthesis, Optical and Electrochemical Sensing, and Computational Studies , 2004 .

[31]  A. Pandey,et al.  Coordination Behaviour of 1-(1-Phenyl-3-p-chlorophenyl)-pyrazolylcarboxaldehyde Thiosemicarbazone with Cobalt(II), Nickel(II), Copper(II) and Zinc(II) , 1991 .