An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates

Abstract An efficient computational approach based on a generalized unconstrained approach in conjunction with isogeometric analysis (IGA) are proposed for dynamic control of smart piezoelectric composite plates. In composite plates, the mechanical displacement field is approximated according to the proposal model using isogeometric elements and the nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Karman strains and solved by Newmark time integration. Through the thickness of each piezoelectric layer, the electric potential is assumed linearly. For active control of the piezoelectric composite plates, a close-loop system is used. An optimization procedure using genetic algorithm (GA) is considered to search optimal design for actuator input voltages. Various numerical examples are investigated to show high accuracy and reliability of the proposed method.

[1]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[2]  K. Y. Dai,et al.  Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method , 2004 .

[3]  Stéphane Bordas,et al.  Isogeometric analysis of functionally graded plates using a refined plate theory , 2014 .

[4]  Stéphane Bordas,et al.  Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory , 2014 .

[5]  M. Ray,et al.  Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber reinforced composites , 2009 .

[6]  A. Leung An unconstrained third-order plate theory , 1991 .

[7]  Hung Nguyen-Xuan,et al.  An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates , 2013 .

[8]  L. Gallimard,et al.  Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm , 2010 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  E. Hinton,et al.  Finite element analysis of geometrically nonlinear plate behaviour using a mindlin formulation , 1980 .

[11]  Ya-Peng Shen,et al.  Optimal control of active structures with piezoelectric modal sensors and actuators , 1997 .

[12]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[13]  John Anthony Mitchell,et al.  A refined hybrid plate theory for composite laminates with piezoelectric laminae , 1995 .

[14]  Jie Yang,et al.  Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading , 2003 .

[15]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[16]  S. Y. Wang,et al.  A finite element model for the static and dynamic analysis of a piezoelectric bimorph , 2004 .

[17]  Vinh Phu Nguyen,et al.  Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm , 2014, Comput. Aided Des..

[18]  Singiresu S Rao,et al.  Optimal placement of actuators in actively controlled structures using genetic algorithms , 1991 .

[19]  J. N. Reddy,et al.  Geometrically nonlinear transient analysis of laminated composite plates , 1983 .

[20]  M. C. Ray,et al.  Optimal Control of Laminated Plate with Piezoelectric Sensor and Actuator Layers , 1998 .

[21]  A. Suleman,et al.  A Simple Finite Element Formulation for a Laminated Composite Plate with Piezoelectric Layers , 1995 .

[22]  W. Hwang,et al.  Finite Element Modeling of Piezoelectric Sensors and Actuators , 1993 .

[23]  Hung Nguyen-Xuan,et al.  Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3) , 2013 .

[24]  Afzal Suleman,et al.  Modelling and design of adaptive composite structures , 2000 .

[25]  M. C. Ray,et al.  Active damping of geometrically nonlinear vibrations of doubly curved laminated composite shells , 2011 .

[26]  Rakesh K. Kapania,et al.  Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates , 2012 .

[27]  C. Lim,et al.  A new unconstrained third-order plate theory for Navier solutions of symmetrically laminated plates , 2003 .

[28]  R. M. Natal Jorge,et al.  Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method , 2011 .

[29]  Suhuan Chen,et al.  The static shape control for intelligent structures , 1997 .

[30]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[31]  Tuan Le-Manh,et al.  Postbuckling of laminated composite plates using NURBS-based isogeometric analysis , 2014 .

[32]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[33]  D. J. Dawe,et al.  Nonlinear transient analysis of rectangular composite laminated plates , 2000 .

[34]  Ser Tong Quek,et al.  Vibration control of smart piezoelectric composite plates , 2001 .

[35]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[36]  Trung Nguyen-Thoi,et al.  A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates , 2015 .

[37]  Kok Keng Ang,et al.  Dynamic stability analysis of finite element modeling of piezoelectric composite plates , 2004 .

[38]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[39]  J. N. Reddy,et al.  A finite-element model for piezoelectric composite laminates , 1997 .

[40]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[41]  Bernd Simeon,et al.  Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations , 2013 .

[42]  S. Narayanan,et al.  Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs , 2008 .

[43]  Junji Tani,et al.  VIBRATION CONTROL SIMULATION OF LAMINATED COMPOSITE PLATES WITH INTEGRATED PIEZOELECTRICS , 1999 .

[44]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[45]  Chien H. Thai,et al.  Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements , 2015 .

[46]  Dimitris A. Saravanos,et al.  Exact free‐vibration analysis of laminated plates with embedded piezoelectric layers , 1995 .

[47]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[48]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[49]  I Y Shen Bending and torsional vibration control of composite beams through intelligent constrained-layer damping treatments , 1995 .

[50]  Hung Nguyen-Xuan,et al.  Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory , 2014, ArXiv.

[51]  Trung Nguyen-Thoi,et al.  Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT , 2014 .

[52]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[53]  Dale A. Hopkins,et al.  Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates , 1997 .

[54]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[55]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[56]  Georg Stadler,et al.  Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate , 2007 .

[57]  Ming Jen Tan,et al.  Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method , 2002 .

[58]  M. C. Ray,et al.  Finite Element Analysis of Smart Structures Containing Piezoelectric Fiber-Reinforced Composite Actuator , 2004 .

[59]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[60]  Hung Nguyen-Xuan,et al.  High-order B-splines based finite elements for delamination analysis of laminated composites , 2013 .

[61]  C. S. Barcellos,et al.  Evaluation and verification of an HSDT-Layerwise generalized finite element formulation for adaptive piezoelectric laminated plates , 2011 .

[62]  H. Nguyen-Xuan,et al.  Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory , 2015 .