Discrete FeII Spin‐Crossover Complexes of 2,2′‐Dipyridylamino‐Substituted s‐Triazine Ligands with Phenoxo, Cyanophenoxo and Dibenzylamino Functionalities

Four 2,2′-dipyridylamino-s-triazine-substituted ligands, each of which incorporate different aromatic substituents (phenoxo, 4-CN-phenoxo and benzylamino) with different degrees of bulk and flexibility, have been formed and incorporated into a number of mononuclear FeII complexes of type trans-[FeII(L)2(NCX)2]·solvent (in which X = S, Se and BH3). These ligands were designed to promote π–π stacking between complexes. The complexes reported have been comprehensively characterised using single-crystal diffraction techniques in combination with magnetic susceptibility measurements. Light-induced excited spin-state trapping (LIESST) measurements have been performed on selected complexes. Light irradiation has shown the occurrence of a reversible photoswitching process at low temperature.

[1]  H. Adams,et al.  Stepped spin crossover in Fe(III) halogen substituted quinolylsalicylaldimine complexes. , 2014, Dalton transactions.

[2]  S. Teat,et al.  Enhancement of spin-crossover cooperativity mediated by lone pair-π interactions and halogen bonding. , 2014, Chemical communications.

[3]  K. Vignesh,et al.  Crown-linked dipyridylamino-triazine ligands and their spin-crossover iron(II) derivatives: magnetism, photomagnetism and cooperativity. , 2013, Dalton transactions.

[4]  J. Long,et al.  Tristability in a light-actuated single-molecule magnet. , 2013, Journal of the American Chemical Society.

[5]  S. Youngme,et al.  Influence of supramolecular bonding contacts on the spin crossover behaviour of iron(II) complexes from 2,2'-dipyridylamino/s-triazine ligands. , 2013, Dalton transactions.

[6]  S. Youngme,et al.  Subtlety of the Spin‐Crossover Phenomenon Observed with Dipyridylamino‐Substituted Triazine Ligands , 2013 .

[7]  Jonathan A. Kitchen,et al.  Pressure Effect Studies on the Spin-Transition Behavior of a Dinuclear Iron(II) Compound , 2013 .

[8]  M. Halcrow Spin-crossover materials : properties and applications , 2013 .

[9]  J. Real,et al.  Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: pressure-induced spin crossover in the porous {Fe(II)(pz)[Pd(II)(SCN)4]} 3D coordination polymer. , 2012, Inorganic chemistry.

[10]  S. Batten,et al.  Iron(II) Mononuclear Materials Containing Functionalised Dipyridylamino-Substituted Triazine Ligands: Structure, Magnetism and Spin Crossover , 2012 .

[11]  S. Batten,et al.  Spin crossover in polymeric and heterometallic FeII species containing polytopic dipyridylamino-substituted-triazine ligands. , 2012, Dalton transactions.

[12]  S. Batten,et al.  Polymorphism and spin crossover in mononuclear Fe(II) species containing new dipyridylamino-substituted s-triazine ligands. , 2012, Dalton transactions.

[13]  S. Batten,et al.  A temperature-dependent order-disorder and crystallographic phase transition in a 0D Fe(II) spin crossover compound and its non-spin crossover Co(II) isomorph. , 2011, Dalton transactions.

[14]  S. Kawata,et al.  Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions. , 2009, Chemistry.

[15]  M. Marchivie,et al.  The key role of the intermolecular pi-pi interactions in the presence of spin crossover in neutral [Fe(abpt)2A2] complexes (A = terminal monoanion N ligand). , 2008, Inorganic chemistry.

[16]  Jean-François Létard,et al.  Photomagnetism of iron(II) spin crossover complexes—the T(LIESST) approach , 2006 .

[17]  M. Marchivie,et al.  Structural Aspects of Spin Crossover — Example of the [FeIILn(NCS)2] Complexes , 2005 .

[18]  M. Marchivie,et al.  A guideline to the design of molecular-based materials with long-lived photomagnetic lifetimes. , 2005, Chemistry.

[19]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[20]  J. Let́ard,et al.  Photo-induced spin-transition: the role of the iron(II) environment distortion. , 2005, Acta crystallographica. Section B, Structural science.

[21]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[22]  A. Fujishima,et al.  Iron(III) spin-crossover compounds with a wide apparent thermal hysteresis around room temperature. , 2001, Journal of the American Chemical Society.

[23]  O. Kahn,et al.  Critical temperature of the LIESST effect in iron(II) spin crossover compounds , 1999 .

[24]  O. Lavastre,et al.  Wide Thermal Hysteresis for the Mononuclear Spin-Crossover Compound cis-Bis(thiocyanato)bis[N-(2‘-pyridylmethylene)-4-(phenylethynyl)anilino]iron(II) , 1997 .

[25]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[26]  Epiphane Codjovi,et al.  A spin transition system with a thermal hysteresis at room temperature , 1993 .

[27]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[28]  C. Kepert,et al.  Cooperativity in spin crossover systems: memory, magnetism and microporosity , 2004 .