Laguerre-based modelling and predictive control of multi-input multi-output systems applied to a communicating two-tank system (CTTS)

In this paper, a novel method is constructed for model predictive control (MPC) of multi-input multi-output (MIMO) systems. The latter are represented by a discrete-time MIMO ARX model expansion on Laguerre orthonormal bases. The resulting model, entitled the MIMO ARX-Laguerre model, provides a recursive representation with parameter number reduction. This reduction is strongly linked to the choice of Laguerre poles, and therefore we propose a new algorithm to optimize the Laguerre poles of the resulting model. The recursive formulation of the MIMO ARX-Laguerre model is used to obtain the MPC strategy. An ℓ 2 -norm finite moving horizon cost function is used to obtain a control law which is implemented as a quadratic programming (QP) problem. The effectiveness of the proposed controller that takes into account physical constraints is illustrated by a numerical simulation example and by a practical validation on an experimental communicating two-tank system (CTTS).

[1]  J. MacArthur,et al.  A new approach for nonlinear process identification using orthonormal bases and ordinal splines , 2012 .

[2]  Zheng Li,et al.  Predictive controller design for multivariable process system based on support vector machine model , 2011, Int. J. Model. Identif. Control..

[3]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[4]  Jalel Ghabi,et al.  Robust Predictive Control using a GOBF Model for MISO Systems , 2007, Int. J. Comput. Commun. Control.

[5]  Liuping Wang Discrete model predictive controller design using Laguerre functions , 2004 .

[6]  Kais Bouzrara,et al.  Non-linear predictive controller for uncertain process modelled by GOBF-Volterra models , 2013, Int. J. Model. Identif. Control..

[7]  Gérard Favier,et al.  Robust predictive control using Kautz model , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[8]  B. Ninness,et al.  MIMO system identification using orthonormal basis functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  Wallace E. Larimore,et al.  Statistical optimality and canonical variate analysis system identification , 1996, Signal Process..

[10]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[11]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[12]  K. Lim,et al.  Generalized Predictive Control of , 2022 .

[13]  Kais Bouzrara,et al.  Expansion of MIMO ARX model on Laguerre orthonormal bases , 2013, 2013 International Conference on Electrical Engineering and Software Applications.

[14]  Liuping Wang,et al.  Exploiting Laguerre functions to improve the feasibility/performance compromise in MPC , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  Wagner Caradori do Amaral,et al.  Optimal Expansions of Discrete-Time Volterra Models Using Laguerre Functions , 2003 .

[16]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[17]  Sachin C. Patwardhan,et al.  Closed-loop identification using direct approach and high order ARX/GOBF-ARX models , 2011 .

[18]  Dewei Li,et al.  The synthesis of robust model predictive control with QP formulation , 2011, Int. J. Model. Identif. Control..

[19]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[21]  Liuping Wang,et al.  Discrete time model predictive control design using Laguerre functions , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[22]  Eric Rogers,et al.  Predictive-repetitive control with constraints: From design to implementation , 2013 .

[23]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[24]  José Ragot,et al.  Nonlinear predictive controller based on S-PARAFAC Volterra models applied to a communicating two-tank system , 2015, Int. J. Control.

[25]  J. A. Rossiter,et al.  Novel programmable logic controller implementation of a predictive controller based on Laguerre functions and multiparametric solutions , 2012 .

[26]  M. Morari,et al.  Robust Stability of Constrained Model Predictive Control , 1993, 1993 American Control Conference.

[27]  José Ragot,et al.  Decomposition of an ARX model on Laguerre orthonormal bases. , 2012, ISA transactions.

[28]  Ronald K. Pearson,et al.  Nonlinear model-based control using second-order Volterra models , 1995, Autom..

[29]  José Ragot,et al.  Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and output , 2013, Int. J. Control.

[30]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..

[31]  Nasser Saghatoleslami,et al.  Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm , 2010 .

[32]  Przemysław Śliwiński,et al.  Nonlinear System Identification by Haar Wavelets , 2012 .

[33]  R. Fletcher Practical Methods of Optimization , 1988 .

[34]  M. Shuhaimi,et al.  Improved method for development of parsimonious orthonormal basis filter models , 2011 .

[35]  H. Messaoud,et al.  Nonlinear model based predictive control using multiple models approach expanded on Laguerre bases , 2015 .