Comparison between simultaneous and sequential updating in 2n+1−1 cellular automata
暂无分享,去创建一个
[1] D. Stauffer,et al. Test of three-dimensional Q2R Ising algorithm , 1987 .
[2] S. Redner,et al. Introduction To Percolation Theory , 2018 .
[3] Hans J. Herrmann,et al. Fast algorithm for the simulation of Ising models , 1986 .
[4] J. Morniroli,et al. Crystalline defects in M7C3 carbides , 1983 .
[5] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[6] Herrmann,et al. Dynamics of spreading phenomena in two-dimensional Ising models. , 1987, Physical review letters.
[7] M. H. Kalos,et al. A new multispin coding algorithm for Monte Carlo simulation of the Ising model , 1984 .
[8] K. Binder,et al. Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .
[9] Scott Kirkpatrick,et al. A very fast shift-register sequence random number generatorjournal of computational physics , 1981 .
[10] B. Derrida,et al. Effect of thermal noise and initial conditions in the dynamics of a mean-field ferromagnet , 1988 .
[11] Universality two-dimensional Kauffman model for parallel and sequential updating , 1988 .
[12] B. Derrida,et al. Finite size scaling study of dynamical phase transitions in two dimensional models : Ferromagnet, symmetric and non symmetric spin glasses , 1988 .
[13] G. Bhanot. The Metropolis algorithm , 1988 .
[14] G. Vichniac. Simulating physics with cellular automata , 1984 .
[15] E. Bauer-Grosse,et al. Etude des défauts de structure dans le carbure defer métastable “Fe7C3” formé lors de la cristallisation d'alliages amorphes fer-carbone , 1981 .
[16] S. Wolfram,et al. Two-dimensional cellular automata , 1985 .