Development of a semigraphitic sulfur-doped ordered mesoporous carbon material for electroanalytical applications

[1]  B. Cornils Langmuir , 2020, Catalysis from A to Z.

[2]  Guy de Villers Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.

[3]  A. Toland,et al.  Carbon , 2018, Field to Palette.

[4]  V. Șerban,et al.  Influence of the Graphitisation Degree of Carbon Nano Fibres Serving as Support Material for Noble Metal Electro Catalysts on the Performance of PEM Fuel Cells , 2016 .

[5]  N. Nelson,et al.  Synergistic Interaction between Oxides of Copper and Iron for Production of Fatty Alcohols from Fatty Acids , 2015 .

[6]  K. László,et al.  Sulfur‐Doped Carbon Aerogel as a Metal‐Free Oxygen Reduction Catalyst , 2015 .

[7]  C. Jin,et al.  Facile Synthesis and Electrocatalytic Activity of Sulfur Doped Carbon for Oxygen Reduction , 2015 .

[8]  Zaiping Guo,et al.  Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries , 2015 .

[9]  G. Zeng,et al.  Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. , 2014, Biosensors & bioelectronics.

[10]  Yufan Zhang,et al.  Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction , 2013 .

[11]  C. Elliott,et al.  Approaches for the simultaneous detection of thiamphenicol, florfenicol and florfenicol amine using immunochemical techniques. , 2013, Journal of immunological methods.

[12]  Lihua Zhu,et al.  Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol , 2013 .

[13]  Liping Guo,et al.  Ordered mesoporous carbon for electrochemical sensing: a review. , 2012, Analytica chimica acta.

[14]  A. Walcarius Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes , 2012 .

[15]  S. Joo,et al.  Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon , 2011 .

[16]  M. Seredych,et al.  Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes , 2011 .

[17]  Jun Jin,et al.  Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable , 2011 .

[18]  Shuru Chen,et al.  Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery , 2011 .

[19]  S. Skrzypek,et al.  Cathodic stripping voltammetry of clothianidin: Application to environmental studies , 2011 .

[20]  M. Seredych,et al.  Enhancement in dibenzothiophene reactive adsorption from liquid fuel via incorporation of sulfur heteroatoms into the nanoporous carbon matrix. , 2011, ChemSusChem.

[21]  Chang Ming Li,et al.  Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. , 2011, Analytica chimica acta.

[22]  D. Zhao,et al.  Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas , 2011 .

[23]  Seok-Hee Lee,et al.  Thermal Stability of ALD-HfO2/GaAs Pretreated with Trimethylaluminium , 2011 .

[24]  L. Niu,et al.  Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. , 2010, Biosensors & bioelectronics.

[25]  Jin Hoe Kim,et al.  Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbonvia strong metal-support interaction , 2009 .

[26]  D. Zhao,et al.  Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties , 2009 .

[27]  Dan Zheng,et al.  Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film , 2009 .

[28]  V. S. Lin,et al.  Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. , 2008, Nano letters.

[29]  S. Joo,et al.  Synthesis and characterization of mesoporous carbon for fuel cell applications , 2007 .

[30]  Jianlin Shi,et al.  Synthesis and Magnetic Properties of Mesostructured γ-Fe2O3/Carbon Composites by a Co-casting Method , 2007 .

[31]  S. Iannaccone Meeting Abstracts , 2003, Journal of child neurology.

[32]  J. Zeng,et al.  Preparation and Characterization of Highly Ordered Graphitic Mesoporous Carbon as a Pt Catalyst Support for Direct Methanol Fuel Cells , 2005 .

[33]  Andrew Baxter,et al.  Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol , 2005 .

[34]  Y. Xia,et al.  Synthesis of Ordered Mesoporous Carbon and Nitrogen‐Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method , 2004 .

[35]  T. Pinnavaia,et al.  Graphitic mesostructured carbon prepared from aromatic precursors. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[36]  Nevin Erk,et al.  Differential pulse anodic voltammetric determination of pantoprazole in pharmaceutical dosage forms and human plasma using glassy carbon electrode. , 2003, Analytical biochemistry.

[37]  E. Iglesia,et al.  Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer−Tropsch Synthesis , 2001 .

[38]  Mietek Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[39]  A. P. Terzyk,et al.  The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: The temperature dependence of adsorption at the neutral pH , 2000 .

[40]  Artur P. Terzyk,et al.  The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro , 2000 .

[41]  Heyong He,et al.  A Reliable Synthesis of Cubic Mesoporous MCM-48 Molecular Sieve , 1998 .

[42]  C. Saby,et al.  Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media , 1998 .

[43]  Dajun Long,et al.  Parallel incident spectroelectrochemistry study of chloramphenicol , 1998 .

[44]  N. Stradiotto,et al.  Electrochemical behavior of a nitrobenzenesulfonyl derivative of aniline in aqueous solution , 1997 .

[45]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[46]  M. Morita,et al.  Electrochemical Behavior of a 4-Nitrothiophenol Modified Electrode Prepared by the Self-Assembly Method , 1995 .

[47]  R. Meunier‐Prest,et al.  The reduction mechanism of aromatic nitro compounds in aqueous medium: Part V. The reduction of nitrosobenzene between pH 0.4 and 13 , 1994 .

[48]  A. Ōya,et al.  Carbonization and graphitization of poly-p-phenylene sulphide (PPS) film , 1994, Journal of Materials Science.

[49]  E. Laviron,et al.  The reduction mechanism of aromatic nitro compounds in aqueous medium: Part I. Reduction to dihydroxylamines between pH 0 and 5 , 1990 .

[50]  P. Richter,et al.  Voltammetric behaviour of nitrofurazone, furazolidone and other nitro derivatives of biological importance. , 1987, The Analyst.

[51]  R. Perkin,et al.  Gray Baby Syndrome Revisited , 1982, Clinical pediatrics.

[52]  F. Fraunfelder,et al.  Fatal aplastic anemia following topical administration of ophthalmic chloramphenicol. , 1982, American journal of ophthalmology.

[53]  G. Bacon THE INTERLAYER SPACING OF GRAPHITE , 1951 .