Enantioselective Synthesis of Chiral Cyclobutenes Enabled by Brønsted Acid-Catalyzed Isomerization of BCBs.

Chiral cyclobutene units are commonly found in natural products and biologically active molecules. Transition-metal-catalysis has been extensively used in asymmetric synthesis of such structures, while organocatalytic approaches remain elusive. In this study, bicyclo[1.1.0]butanes are involved in enantioselective transformation for the first time to offer a highly efficient route toward cyclobutenes with good regio- and enantiocontrol. The utilization of N-triflyl phosphoramide as a chiral Brønsted acid promoter enables this isomerization process to proceed under mild conditions with low catalyst loading as well as good functional group compatibility. The resulting chiral cyclobutenes could serve as platform molecules for downstream manipulations with excellent reservation of stereochemical integrity, demonstrating the synthetic practicality of the developed method. Control experiments have also been performed to verify the formation of a key carbocation intermediate at the benzylic position.

[1]  F. Glorius,et al.  Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. , 2023, Angewandte Chemie.

[2]  A. Studer,et al.  Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes. , 2023, Angewandte Chemie.

[3]  Xuesu Xiao,et al.  Biomimetic asymmetric catalysis , 2023, Science China Chemistry.

[4]  Yulei Zhu,et al.  Ni-Catalyzed Tunable Enantioconvergence and Kinetic Resolution in the Coupling of Tertiary Cyclobutenols with Arylboroxines. , 2023, Angewandte Chemie.

[5]  B. List,et al.  A Catalytic Asymmetric Hydrolactonization , 2023, Journal of the American Chemical Society.

[6]  Soumitra Agasti,et al.  A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres , 2023, Nature Chemistry.

[7]  Liang Xu,et al.  Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. , 2023, Journal of the American Chemical Society.

[8]  Yu Wang,et al.  Cobalt-Catalyzed Diastereo- and Enantioselective Carbon-Carbon Bond Forming Reactions of Cyclobutenes. , 2023, Journal of the American Chemical Society.

[9]  F. W. Goetzke,et al.  Rhodium‐Catalyzed Asymmetric Arylation of Cyclobutenone Ketals , 2023, Angewandte Chemie.

[10]  Johannes C. L. Walker,et al.  Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis , 2023, Communications Chemistry.

[11]  G. Molander,et al.  Photochemical Intermolecular [3σ + 2σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes. , 2022, Journal of the American Chemical Society.

[12]  V. Aggarwal,et al.  Strain‐Release Driven Epoxidation and Aziridination of Bicyclo[1.1.0]butanes via Palladium Catalyzed σ‐Bond Nucleopalladation , 2022, Angewandte Chemie.

[13]  P. Wipf,et al.  How mono- and diphosphine ligands alter regioselectivity of the Rh-catalyzed annulative cleavage of bicyclo[1.1.0]butanes , 2022, Nature Communications.

[14]  S. Xiang,et al.  Imidodiphosphorimidates ( IDPis ): Catalyst motifs with unprecedented reactivity and selectivity , 2022, Chinese Journal of Chemistry.

[15]  S. Meyer,et al.  Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes , 2022, ACS catalysis.

[16]  F. Glorius,et al.  Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. , 2022, Journal of the American Chemical Society.

[17]  Pavel K. Mykhailiuk,et al.  A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes , 2022, Angewandte Chemie.

[18]  Thomas C. Fessard,et al.  Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. , 2022, Journal of the American Chemical Society.

[19]  K. Dhake,et al.  Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes. , 2022, Angewandte Chemie.

[20]  F. Glorius,et al.  Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer , 2022, Nature.

[21]  P. Lu,et al.  Dancing on Ropes ‐ Enantioselective Functionalization of Preformed Four‐membered Carbocycles , 2022, Chinese Journal of Chemistry.

[22]  E. Anderson,et al.  Synthesis and Applications of Polysubstituted Bicyclo[1.1.0]butanes. , 2021, Journal of the American Chemical Society.

[23]  Ying Xia,et al.  Palladium-Catalyzed Carbene Coupling Reactions of Cyclobutanone N-Sulfonylhydrazones. , 2021, Organic letters.

[24]  A. Roblin,et al.  Synthesis of Functionalized Cyclobutenes and Spirocycles via Asymmetric P(III)/P(V) Redox Catalysis , 2021 .

[25]  M. Zhang,et al.  Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. , 2021, Angewandte Chemie.

[26]  P. Wipf,et al.  Semipinacol-Type Rearrangements of [3-(Arylsulfonyl)bicyclo[1.1.0]butan-1-yl]alkanols. , 2021, Organic letters.

[27]  Felix Reiners,et al.  Uncommon Four‐Membered Building Blocks – Cyclobutenes, Azetines and Thietes , 2021, Chemical record.

[28]  A. Parra,et al.  Stereoselective diboration of spirocyclobutenes: a platform for the synthesis of spirocycles with orthogonal exit vectors. , 2021, Angewandte Chemie.

[29]  D. Wei,et al.  Catalytic Enantioselective Desymmetrization of Cyclobutane-1,3-diones by Carbonyl-Amine Condensation. , 2021, Organic letters.

[30]  P. Lu,et al.  Enantioselective Synthesis of 3-Substituted Cyclobutenes via Catalytic Conjugate Addition/Trapping Strategies. , 2019, Angewandte Chemie.

[31]  Shou‐Fei Zhu,et al.  Chiral Spiro Phosphoramide-Catalyzed Sulfa-Michael Addition/Enantioselective Protonation of Exocyclic Enones. , 2019, Organic letters.

[32]  T. V. RajanBabu,et al.  Catalytic Enantioselective Synthesis of Cyclobutenes from Alkynes and Alkenyl Derivatives. , 2019, Journal of the American Chemical Society.

[33]  A. Voituriez,et al.  Catalytic and Asymmetric Process via PIII/PV=O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. , 2019, Journal of the American Chemical Society.

[34]  J. Montgomery,et al.  Nickel-Catalyzed Reductive [2+2] Cycloaddition of Alkynes. , 2018, Journal of the American Chemical Society.

[35]  J. Zhou,et al.  Asymmetric Intermolecular Heck Reaction of Propargylic Acetates and Cycloalkenes to Access Fused Cyclobutenes. , 2017, Angewandte Chemie.

[36]  A. Echavarren,et al.  Enantioselective Synthesis of Cyclobutenes by Intermolecular [2+2] Cycloaddition with Non-C2 Symmetric Digold Catalysts , 2017, Journal of the American Chemical Society.

[37]  R. Scopelliti,et al.  Divergent Asymmetric Synthesis of Polycyclic Compounds via Vinyl Triazenes. , 2017, Angewandte Chemie.

[38]  P. Zavalij,et al.  Catalytic Asymmetric [3+1]-Cycloaddition Reaction of Ylides with Electrophilic Metallo-enolcarbene Intermediates. , 2017, Angewandte Chemie.

[39]  I. Marek,et al.  Brook Rearrangement as Trigger for Carbene Generation: Synthesis of Stereodefined and Fully Substituted Cyclobutenes. , 2017, Journal of the American Chemical Society.

[40]  N. Maulide,et al.  Cyclobutenes: At a Crossroad between Diastereoselective Syntheses of Dienes and Unique Palladium-Catalyzed Asymmetric Allylic Substitutions. , 2016, Accounts of chemical research.

[41]  Ren‐Jie Song,et al.  The cycloaddition reaction using visible light photoredox catalysis , 2016, Science China Chemistry.

[42]  D. Didier,et al.  Highly Diastereoselective Synthesis of Methylenecyclobutanes by Merging Boron-Homologation and Boron-Allylation Strategies. , 2015, Angewandte Chemie.

[43]  M. K. Brown,et al.  Cyclobutane and cyclobutene synthesis: catalytic enantioselective [2+2] cycloadditions. , 2015, Angewandte Chemie.

[44]  P. Wipf,et al.  Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes. , 2015, Accounts of chemical research.

[45]  M. Rueping,et al.  Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. , 2014, Chemical reviews.

[46]  T. Bach,et al.  Enantioselective catalysis of the intermolecular [2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates. , 2014, Angewandte Chemie.

[47]  Shaowu Wang,et al.  Synthesis of carborane-fused cyclobutenes and cyclobutanes , 2014, Science China Chemistry.

[48]  Maria Teresa Oliveira,et al.  Catalytic asymmetric diastereodivergent deracemization. , 2011, Angewandte Chemie.

[49]  A. Chan,et al.  Ligand-controlled enantioselective [2 + 2] cycloaddition of oxabicyclic alkenes with terminal alkynes using chiral iridium catalysts. , 2010, Organic letters.

[50]  D. MacMillan The advent and development of organocatalysis , 2008, Nature.

[51]  T. Akiyama,et al.  Stronger Brønsted acids. , 2007, Chemical reviews.

[52]  D. Nakashima,et al.  Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels-Alder reaction. , 2006, Journal of the American Chemical Society.

[53]  U. Girreser,et al.  Polylithiumorganic compounds. Part 29: C,C Bond cleavage of phenyl substituted and strained carbocycles using lithium metal , 2004 .

[54]  M. Terada,et al.  Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. , 2004, Journal of the American Chemical Society.

[55]  Junji Itoh,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. , 2004, Angewandte Chemie.

[56]  D. MacMillan,et al.  New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction , 2000 .

[57]  Richard A. Lerner,et al.  Proline-Catalyzed Direct Asymmetric Aldol Reactions , 2000 .

[58]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[59]  Y. Hayashi,et al.  Asymmetric [2 + 2] cycloaddition reaction catalyzed by a chiral titanium reagent , 1989 .

[60]  A. Becknell,et al.  Competing pathways in the photolysis of bicyclo[1.1.0]butane , 1985 .