Adaptive computations on conforming quadtree meshes

In this paper, the quadtree data structure and conforming polygonal interpolants are used to develop an h-adaptive finite element method. Quadtree is a hierarchical data structure that is computationally attractive for adaptive numerical simulations. Mesh generation and adaptive refinement of quadtree meshes is straight-forward. However, finite elements are non-conforming on quadtree meshes due to level-mismatches between adjacent elements, which results in the presence of so-called hanging nodes. In this study, we use meshfree (natural-neighbor, nn) basis functions on a reference element combined with an affine map to construct conforming approximations on quadtree meshes. Numerical examples are presented to demonstrate the accuracy and performance of the proposed h-adaptive finite element method.

[1]  B.,et al.  Natural Neighbor Galerkin Methods , 2001 .

[2]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[4]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[5]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[6]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[7]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[8]  Ivo Babuška,et al.  Reliable error estimation and mesh adaptation for the finite element method , 1979 .

[9]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[10]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[11]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[12]  Kokichi Sugihara,et al.  Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..

[13]  Walid S. Saba,et al.  ANALYSIS AND DESIGN , 2000 .

[14]  Deborah Greaves,et al.  Quadtree grid generation: Information handling, boundary fitting and CFD applications , 1996 .

[15]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[16]  Deborah Greaves,et al.  Hierarchical tree-based finite element mesh generation , 1999 .

[17]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[18]  Hanan Samet,et al.  Hierarchical data structures and algorithms for computer graphics. II. Applications , 1988, IEEE Computer Graphics and Applications.

[19]  C. Kesselman,et al.  Computational Grids , 1998, VECPAR.

[20]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[21]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[22]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[23]  K. Steiglitz,et al.  Operations on ImagesUsingQuadTrees , 1979 .

[24]  Norman H. Christ,et al.  Weights of links and plaquettes in a random lattice , 1982 .

[25]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[26]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[27]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[28]  Jonathan A. Dantzig,et al.  An adaptive mesh refinement scheme for solidification problems , 1996 .

[29]  Hanan Samet,et al.  Neighbor finding techniques for images represented by quadtrees , 1982, Comput. Graph. Image Process..

[30]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[31]  Petr Krysl,et al.  Object‐oriented hierarchical mesh refinement with CHARMS , 2004 .

[32]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[33]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  J. Tinsley Oden,et al.  Computational methods in nonlinear mechanics , 1980 .

[35]  Hanan Samet,et al.  Hierarchical data structures and algorithms for computer graphics. I. Fundamentals , 1988, IEEE Computer Graphics and Applications.

[36]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[37]  K. R. Grice,et al.  Robust, geometrically based, automatic two‐dimensional mesh generation , 1987 .

[38]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .