Szegö limit theorem for operators with discontinuous symbols and applications to entanglement entropy

The main result in this paper is a one term Szego type asymptotic formula with a sharp remainder estimate for a class of integral operators of the pseudodifferential type with symbols which are allowed to be non-smooth or discontinuous in both position and momentum. The simplest example of such symbol is the product of the characteristic functions of two compact sets, one in real space and the other in momentum space. The results of this paper are used in a study of the violation of the area entropy law for free fermions in [18]. This work also provides evidence towards a conjecture due to Harold Widom.

[1]  C. Tracy,et al.  The Fisher-Hartwig conjecture and generalizations☆ , 1991 .

[2]  Harold Widom,et al.  On a class of integral operators on a half-space with discontinuous symbol , 1990 .

[3]  F. Mezzadri,et al.  Random Matrix Theory and Entanglement in Quantum Spin Chains , 2004, quant-ph/0407047.

[4]  A. Böttcher The Onsager formula, the fisher-hartwig conjecture, and their influence on research into Toeplitz operators , 1995 .

[5]  G. Szegö Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion , 1915 .

[6]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[7]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[8]  Harold Widom,et al.  On a Class of Integral Operators with Discontinuous Symbol , 1982 .

[9]  G. Aeppli,et al.  Entangled quantum state of magnetic dipoles , 2003, Nature.

[10]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[11]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[12]  H. Widom Asymptotic Expansions for Pseudodifferential Operators on Bounded Domains , 1985 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[15]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[16]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[17]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[18]  Szegö Type Limit Theorems , 1996 .

[19]  Moduli of continuity and average decay of Fourier transforms: two-sided estimates , 2002, math/0212254.

[20]  H. Widom Eigenvalue distribution theorems for certain homogeneous spaces , 1979 .

[21]  V. Guillemin,et al.  Spectral Asymptotics of Toeplitz Operators on Zoll Manifolds , 1997 .

[22]  V. Korepin,et al.  Entanglement in the XY spin chain , 2004 .

[23]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[24]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[25]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[26]  Lower Order Terms in Szegö Type Limit Theorems on Zoll Manifolds , 2002, math/0212275.

[27]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[28]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. , 2005, Physical review letters.

[30]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[31]  T. Ehrhardt A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities , 2001 .

[32]  Entropy growth of shift-invariant states on a quantum spin chain , 2003, math-ph/0306055.

[33]  V. Korepin,et al.  Universality of entropy scaling in one dimensional gapless models. , 2003, Physical Review Letters.

[34]  Ulrich Schollwoeck,et al.  Entanglement scaling in critical two-dimensional fermionic and bosonic systems , 2006 .

[35]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[36]  Generalizations of Szego Limit Theorem : Higher Order Terms and Discontinuous Symbols , 2001 .

[37]  L. Brandolini,et al.  Average decay of Fourier transforms and integer points in polyhedra , 1997 .

[38]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[39]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[40]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.