Rotated spectral principal component analysis (rsPCA) for identifying dynamical modes of variability in climate systems

Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3-60-day periods) in both GPH and SST and El Niño-Southern Oscillation (ENSO) at low frequencies (2-7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.

[1]  C. Rossby,et al.  ON THE PROPAGATION OF FREQUENCIES AND ENERGY IN CERTAIN TYPES OF OCEANIC AND ATMOSPHERIC WAVES , 1945 .

[2]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[3]  M. Bartlett Periodogram analysis and continuous spectra. , 1950, Biometrika.

[4]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[5]  G. Burroughs,et al.  THE ROTATION OF PRINCIPAL COMPONENTS , 1961 .

[6]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[7]  G. Platzman The Rossby wave , 1968 .

[8]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[9]  John M. Wallace,et al.  Spectral studies of tropospheric wave disturbances in the tropical western Pacific , 1971 .

[10]  John M. Wallace,et al.  Empirical Orthogonal Representation of time series in the frequency domain , 1972 .

[11]  J. Wallace,et al.  Empirical Orthogonal Representation of Time Series in the Frequency Domain. Part I: Theoretical Considerations , 1972 .

[12]  B. Weare,et al.  Empirical Orthogonal Analysis of Pacific Sea Surface Temperatures , 1976 .

[13]  John P. Snyder,et al.  A Comparison of Pseudocylindrical Map Projections , 1977 .

[14]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[15]  Michael B. Richman,et al.  Obliquely Rotated Principal Components: An Improved Meteorological Map Typing Technique? , 1981 .

[16]  John D. Horel,et al.  A Rotated Principal Component Analysis of the Interannual Variability of the Northern Hemisphere 500 mb Height Field , 1981 .

[17]  K. Trenberth,et al.  Characteristic Patterns of Variability of Sea Level Pressure in the Northern Hemisphere , 1981 .

[18]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[19]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[20]  J. Horel Complex Principal Component Analysis: Theory and Examples , 1984 .

[21]  G. Picci,et al.  Dynamic Factor-Analysis Models for Stationary Processes , 1986 .

[22]  I. Jolliffe Principal Components in Regression Analysis , 1986 .

[23]  K. Hasselmann PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns , 1988 .

[24]  Michael A. Palecki,et al.  The Pacific/North American teleconnection pattern and United States climate , 1991 .

[25]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[26]  Lonnie H. Hudgins,et al.  Wavelet transforms and atmopsheric turbulence. , 1993, Physical review letters.

[27]  Yuan Zhang,et al.  Structure and Seasonality of Interannual and Interdecadal Variability of the Geopotential Height and Temperature Fields in the Northern Hemisphere Troposphere. , 1993 .

[28]  Eric S. Johnson,et al.  Structure of Intraseasonal Kelvin Waves in the Equatorial Pacific Ocean , 1993 .

[29]  Michael E. Mann,et al.  Global-scale modes of surface temperature variability on interannual to century timescales , 1994 .

[30]  James W. Hurrell,et al.  Decadal atmosphere-ocean variations in the Pacific , 1994 .

[31]  Jerry M. Davis,et al.  Orthogonal rotation of complex principal components , 1994 .

[32]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[33]  Jonathan M. Lilly,et al.  Multiwavelet spectral and polarization analyses of seismic records , 1995 .

[34]  C. Basdevant,et al.  Wavelet spectra compared to Fourier spectra , 1995 .

[35]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[36]  E. Foufoula‐Georgiou,et al.  Wavelet analysis for geophysical applications , 1997 .

[37]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[38]  Xiao-Hai Yan,et al.  Empirical orthogonal function analysis of sea surface temperature patterns in Delaware Bay , 1997, IEEE Trans. Geosci. Remote. Sens..

[39]  M. Ting,et al.  Summertime U.S. Precipitation Variability and Its Relation toPacific Sea Surface Temperature , 1997 .

[40]  Kevin E. Trenberth,et al.  The Definition of El Niño. , 1997 .

[41]  Y. Kushnir,et al.  The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation , 1998 .

[42]  R. Wayne Higgins,et al.  The Pacific–South American Modes and Tropical Convection during the Southern Hemisphere Winter , 1998 .

[43]  J. Wallace,et al.  The Arctic oscillation signature in the wintertime geopotential height and temperature fields , 1998 .

[44]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[45]  Michael E. Mann,et al.  Oscillatory Spatiotemporal Signal Detection in Climate Studies: A Multiple-Taper Spectral Domain Approach , 1999 .

[46]  Alberto M. Mestas-Nuñez,et al.  Rotated Global Modes of Non-ENSO Sea Surface Temperature Variability , 1999 .

[47]  J. W. Kidson,et al.  Principal Modes of Southern Hemisphere Low-Frequency Variability Obtained from NCEP–NCAR Reanalyses , 1999 .

[48]  Neil J. Holbrook,et al.  Decadal climate variability in Australia during the twentieth century , 1999 .

[49]  S. Feldstein The Timescale, Power Spectra, and Climate Noise Properties of Teleconnection Patterns , 2000 .

[50]  Michael E. Mann,et al.  Interannual Temperature Events and Shifts in Global Temperature: A ''Multiwavelet'' Correlation Approach , 2000 .

[51]  K. Mo,et al.  The Pacific–South American modes and their downstream effects , 2001 .

[52]  W. Kessler EOF Representations of the Madden–Julian Oscillation and Its Connection with ENSO* , 2001 .

[53]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[54]  N. F. Thornhilla,et al.  Spectral principal component analysis of dynamic process data , 2002 .

[55]  N. Mantua,et al.  The Pacific Decadal Oscillation , 2002 .

[56]  D. Karoly,et al.  The Response of the Antarctic Oscillation to Increasing and Stabilized Atmospheric CO2 , 2003 .

[57]  G. Schmidt,et al.  Southern Hemisphere climate response to ozone changes and greenhouse gas increases , 2004 .

[58]  D. Adam The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance , 2004 .

[59]  M. Wheeler,et al.  An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction , 2004 .

[60]  Roy D. Wallen,et al.  The Illustrated Wavelet Transform Handbook , 2004 .

[61]  J. F. Kirby,et al.  Which wavelet best reproduces the Fourier power spectrum? , 2005, Comput. Geosci..

[62]  隆満 本間,et al.  EOF(Empirical Orthogonal Function)による北浦の湖流データ解析 , 2007 .

[63]  Michael B. Richman,et al.  Climate regionalization and rotation of principal components , 2007 .

[64]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[65]  Ian T. Jolliffe,et al.  Empirical orthogonal functions and related techniques in atmospheric science: A review , 2007 .

[66]  James C. McWilliams,et al.  North Pacific Gyre Oscillation links ocean climate and ecosystem change , 2008 .

[67]  P. Roundy,et al.  A combined wave‐number‐‐frequency and time‐extended EOF approach for tracking the progress of modes of large‐scale organized tropical convection , 2009 .

[68]  Steven J. Bograd,et al.  Nutrient and salinity decadal variations in the central and eastern North Pacific , 2009 .

[69]  B. Kirtman,et al.  El Niño in a changing climate , 2009, Nature.

[70]  V. Simoncini,et al.  A Guide to Empirical Orthogonal Functions for Climate Data Analysis , 2010 .

[71]  Clara Deser,et al.  Sea surface temperature variability: patterns and mechanisms. , 2010, Annual review of marine science.

[72]  Sankaran Mahadevan,et al.  Wavelet spectrum analysis approach to model validation of dynamic systems , 2011 .

[73]  P. Webster,et al.  On the location and orientation of the South Pacific Convergence Zone , 2011 .

[74]  Francisco P. Chavez,et al.  Global Modes of Sea Surface Temperature Variability in Relation to Regional Climate Indices , 2011 .

[75]  Tao Lian,et al.  An Evaluation of Rotated EOF Analysis and Its Application to Tropical Pacific SST Variability , 2012 .

[76]  J. Hurrell,et al.  An overview of the North Atlantic Oscillation , 2013 .

[77]  Kevin E. Trenberth,et al.  An apparent hiatus in global warming? , 2013 .

[78]  Debadatta Swain,et al.  Relationship Between Cyclone Intensities and Sea Surface Temperature in the Tropical Indian Ocean , 2013, IEEE Geoscience and Remote Sensing Letters.

[79]  Gudrun Magnusdottir,et al.  The South Pacific Convergence Zone in three decades of satellite images , 2013 .

[80]  Masayoshi Ishii,et al.  Centennial-Scale Sea Surface Temperature Analysis and Its Uncertainty , 2014 .

[81]  Gudrun Magnusdottir,et al.  Diurnal cycle of the South Pacific Convergence Zone in 30 years of satellite images , 2015 .

[82]  Paul E. Roundy,et al.  On the Interpretation of EOF Analysis of ENSO, Atmospheric Kelvin Waves, and the MJO , 2015 .

[83]  O. Geoffroy,et al.  The recent global warming hiatus: What is the role of Pacific variability? , 2015 .

[84]  Hisashi Nakamura,et al.  The Pacific Decadal Oscillation, Revisited , 2016 .

[85]  Ian Simmonds,et al.  A New Method for Identifying the Pacific–South American Pattern and Its Influence on Regional Climate Variability , 2016 .

[86]  Johannes M. C. Mol,et al.  The relationship between spectral and wavelet techniques for noise analysis , 2016 .

[87]  J. Wallace,et al.  Orthogonal PDO and ENSO Indices , 2016 .

[88]  Peter John Huybers,et al.  Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures , 2016 .

[89]  Mary Ellen Miller,et al.  Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[90]  John M. Wallace,et al.  Pairwise-Rotated EOFs of Global SST , 2017 .

[91]  Clara Deser,et al.  El Niño and Southern Oscillation (ENSO): A Review , 2017 .

[92]  Efi Foufoula-Georgiou,et al.  A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US , 2018, Nature Communications.

[93]  J. Wallace,et al.  Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures , 2018 .

[94]  Antonios Mamalakis,et al.  A Multivariate Probabilistic Framework for Tracking the Intertropical Convergence Zone: Analysis of Recent Climatology and Past Trends , 2018, Geophysical Research Letters.

[95]  Shlomo Havlin,et al.  Climate network percolation reveals the expansion and weakening of the tropical component under global warming , 2018, Proceedings of the National Academy of Sciences.

[96]  Tryphon T. Georgiou,et al.  Dynamic Relations in Sampled Processes , 2019, IEEE Control Systems Letters.

[97]  Bulusu Subrahmanyam,et al.  Recent Changes in Southern Ocean Circulation and Climate , 2019, IEEE Geoscience and Remote Sensing Letters.

[98]  Efi Foufoula-Georgiou,et al.  Reply to: A critical examination of a newly proposed interhemispheric teleconnection to Southwestern US winter precipitation , 2019, Nature Communications.

[99]  Byron A. Steinman,et al.  Absence of internal multidecadal and interdecadal oscillations in climate model simulations , 2020, Nature Communications.

[100]  Gustau Camps-Valls,et al.  Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data , 2020, IEEE Transactions on Geoscience and Remote Sensing.