Recognition of the Spherical Laguerre Voronoi Diagram

In this paper, we construct an algorithm for determining whether a given tessellation on a sphere is a spherical Laguerre Voronoi diagram or not. For spherical Laguerre tessellations, not only the locations of the Voronoi generators, but also their weights are required to recover. However, unlike the ordinary spherical Voronoi diagram, the generator set is not unique, which makes the problem difficult. To solve the problem, we use the property that a tessellation is a spherical Laguerre Voronoi diagram if and only if there is a polyhedron whose central projection coincides with the tessellation. We determine the degrees of freedom for the polyhedron, and then construct an algorithm for recognizing Laguerre tessellations.

[1]  Hebert Pérez-Rosés,et al.  Fitting Voronoi Diagrams to Planar Tesselations , 2013, IWOCA.

[2]  Franz Aurenhammer,et al.  Geometric Relations Among Voronoi Diagrams , 1987, STACS.

[3]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[4]  Kokichi Sugihara Three-dimensional convex hull as a fruitful source of diagrams , 2000, Theor. Comput. Sci..

[5]  Henning Friis Poulsen,et al.  On the Use of Laguerre Tessellations for Representations of 3D Grain Structures , 2011 .

[6]  Volker Schmidt,et al.  Inverting Laguerre Tessellations , 2014, Comput. J..

[7]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[8]  D. G. Evans,et al.  Detecting Voronoi (area-of-influence) polygons , 1987 .

[9]  Kokichi Sugihara,et al.  Approximation of fruit skin patterns using spherical Voronoi diagrams , 2017, Pattern Analysis and Applications.

[10]  Volker Schmidt,et al.  Fitting Laguerre tessellation approximations to tomographic image data , 2015, 1508.01341.

[11]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[12]  C. Lautensack,et al.  Fitting three-dimensional Laguerre tessellations to foam structures , 2008 .

[13]  Patrice Koehl,et al.  An analytical method for computing atomic contact areas in biomolecules , 2013, J. Comput. Chem..

[14]  Cheng Li,et al.  Inverting Dirichlet Tessellations , 2003, Comput. J..

[15]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[16]  E. Bolker,et al.  Generalized Dirichlet tessellations , 1986 .

[17]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[18]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[19]  David Hartvigsen,et al.  Recognizing Voronoi Diagrams with Linear Programming , 1992, INFORMS J. Comput..

[20]  H. Honda Geometrical models for cells in tissues. , 1983, International review of cytology.

[21]  Arthur L. Loeb,et al.  Space Structures: Their Harmony and Counterpoint , 1976 .

[22]  Kokichi Sugihara,et al.  Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations Using Planar Photographic Images , 2015, JCDCGG.

[23]  K. Sugihara Laguerre Voronoi Diagram on the Sphere , 2002 .

[24]  Atsuo Suzuki,et al.  APPROXIMATION OF A TESSELLATION OF THE PLANE BY A VORONOI DIAGRAM , 1986 .

[25]  H. Honda Description of cellular patterns by Dirichlet domains: the two-dimensional case. , 1978, Journal of theoretical biology.