Computational methods and new results for chessboard problems

We describe various computing techniques for tackling chessboard domination problems and apply these to the determination of domination and irredundance numbers for queens' and kings' graphs. In particular we confirm that "((QI7) = "((QI8) = 9, and show that "((Q14) = 8, ')'(QI5) "((Q16) = 9, ')'(QI9) = 10, i(QI8) = 10, 10 ::; i(Q19) ::; 11, ir(Qn) = "((Qn) for 1 ::; n ::; 13, IR(Q9) = r(Q9) = 13, IR(QlO) = r(QlO) = 15, ')'(Q4k+d = 2k + 1 for k = 16,18,20 and 21, i(Q22) ::; 12, I R(Ks) = 17, I R(K9) = 25, I R(KlO) = 27, and I R(Kl1 ) = 36. We calculate the number of non-isomorphic minimum dominating and independent dominating sets in the queens' graph Qn for n ::; 15 and n ::; 18 respectively.

[1]  W. W. Ball,et al.  Mathematical Recreations and Problems of Past and Present Times , 2012, Nature.

[2]  E. Cockayne,et al.  Properties of Hereditary Hypergraphs and Middle Graphs , 1978, Canadian Mathematical Bulletin.

[3]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[4]  Charles M. Grinstead,et al.  On the queen domination problem , 1990, Discret. Math..

[5]  Edward M. Reingold,et al.  Backtrack programming techniques , 1975, CACM.

[6]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[7]  L. Bittner Combinatorial Analysis. (Proceedings of the Symposia in Applied Mathematics, Vol. 10) VI + 311 S. Providence, Rhode Island, 1960. American Mathematical Society. Preis geb. $ 7,70 , 1961 .

[8]  Rufus Walker,et al.  An enumerative technique for a class of combinatorial problems , 1960 .

[9]  William D. Weakley Upper bounds for domination numbers of the queen's graph , 2002, Discret. Math..

[10]  Ernest J. Cockayne,et al.  On the independent queens covering problem , 1988, Graphs Comb..

[11]  Odile Favaron,et al.  Irredundance and domination in kings graphs , 2003, Discret. Math..

[12]  Alewyn P. Burger,et al.  Domination and irredundance in the queens' graph , 1997, Discret. Math..

[13]  E. J. COCKAYNE,et al.  Chessboard domination problems , 1991, Discret. Math..

[14]  Peter B. Gibbons,et al.  Some new results for the queens domination problem , 1997, Australas. J Comb..

[15]  Ernest J. Cockayne,et al.  Properties of Queens graphs and the irredundance number of Q7 , 2001, Australas. J Comb..