Dynamics of Jovian atmospheres with applications of nonlinear singular vector method

SUMMARY Nonlinear singular vectors (NSVs) of a Jovian atmosphere model are obtained numerically in this paper. NSVs are the initial perturbation, whose nonlinear evolution attains the maximal value of the cost function, which is constructed according to the physical problem of interest. The results demonstrate that the motions of Jupiter’s atmosphere is relatively stable under some assumptions. Copyright q 2007 John Wiley & Sons, Ltd.

[1]  Mark A. Cane,et al.  Predictability of a Coupled Model of ENSO Using Singular Vector Analysis. Part I: Optimal Growth in Seasonal Background and ENSO Cycles , 1997 .

[2]  A. Hollingsworth,et al.  Some aspects of the improvement in skill of numerical weather prediction , 2002 .

[3]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[4]  G. P. Williams Jovian Dynamics. Part 1: Vortex Stability, Structure, and Genesis , 1996 .

[5]  T. Palmer,et al.  Predictability of a Coupled Model of ENSO Using Singular Vector Analysis. Part II: Optimal Growth and Forecast Skill , 1997 .

[6]  Gareth P. Williams,et al.  Geostrophic Regimes, Intermediate Solitary Vortices and Jovian Eddies , 1984 .

[7]  A. Ingersoll,et al.  Numerical Model of Long-Lived Jovian Vortices , 1980 .

[8]  Gareth P. Williams Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence , 1978 .

[9]  M. Ehrendorfer The Total Energy Norm in a Quasigeostrophic Model , 2000 .

[10]  Jorgen S. Frederiksen,et al.  Singular Vectors, Finite-Time Normal Modes, and Error Growth during Blocking , 2000 .

[11]  Jorgen S. Frederiksen,et al.  Adjoint Sensitivity and Finite-Time Normal Mode Disturbances during Blocking , 1997 .

[12]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[13]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[14]  Mu Mu,et al.  Nonlinear fastest growing perturbation and the first kind of predictability , 2001 .

[15]  M. Mu Nonlinear singular vectors and nonlinear singular values , 2000 .

[16]  Brian F. Farrell,et al.  Optimal Excitation of Baroclinic Waves , 1989 .

[17]  A. Ingersoll,et al.  A Normal-Mode Approach to Jovian Atmospheric Dynamics , 1989 .

[18]  Z. Qingcun,et al.  New developments on existence and uniqueness of solutions to some models in atmospheric dynamics , 1991 .

[19]  A. Ingersoll,et al.  Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion , 1982 .

[20]  Zhiyue Zhang,et al.  Conditional Nonlinear Optimal Perturbations of a Two-Dimensional Quasigeostrophic Model , 2006 .

[21]  E. Tziperman,et al.  Transient Growth and Optimal Excitation of Thermohaline Variability , 2002 .

[22]  Z. Qingcun,et al.  Criteria for the nonlinear stability of three—dimensional quasi—geostrophic motions , 1991 .

[23]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[24]  P. Gierasch,et al.  Stability of zonal flows on Jupiter , 1981 .

[25]  T. Dowling Dynamics of Jovian atmospheres , 1995 .