Sub-universal variational circuits for combinatorial optimization problems

Quantum variational circuits have gained significant attention due to their applications in the quantum approximate optimization algorithm and quantum machine learning research. This work introduces a novel class of classical probabilistic circuits designed for generating approximate solutions to combinatorial optimization problems constructed using two-bit stochastic matrices. Through a numerical study, we investigate the performance of our proposed variational circuits in solving the Max-Cut problem on various graphs of increasing sizes. Our classical algorithm demonstrates improved performance for several graph types to the quantum approximate optimization algorithm. Our findings suggest that evaluating the performance of quantum variational circuits against variational circuits with sub-universal gate sets is a valuable benchmark for identifying areas where quantum variational circuits can excel.

[1]  A. Kolla,et al.  A quantum advantage over classical for local max cut , 2023, 2304.08420.

[2]  P. McMahon,et al.  Ising machines as hardware solvers of combinatorial optimization problems , 2022, Nature Reviews Physics.

[3]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2022, Science.

[4]  Patrick J. Coles,et al.  A semi-agnostic ansatz with variable structure for quantum machine learning , 2021, ArXiv.

[5]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[6]  S. Jordan,et al.  Approximate optimization of the MaxCut problem with a local spin algorithm , 2020, Physical Review A.

[7]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[8]  Volkan Cevher,et al.  Scalable Semidefinite Programming , 2019, SIAM J. Math. Data Sci..

[9]  Supriyo Datta,et al.  Scalable Emulation of Stoquastic Hamiltonians with Room Temperature p-bits , 2019 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[12]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[13]  Supriyo Datta,et al.  p-Bits for Probabilistic Spin Logic , 2018, Applied Physics Reviews.

[14]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[15]  Brian M. Sutton,et al.  Stochastic p-bits for Invertible Logic , 2016, 1610.00377.

[16]  Daniel J. Brod,et al.  Efficient classical simulation of matchgate circuits with generalized inputs and measurements , 2016, 1602.03539.

[17]  Dax Enshan Koh,et al.  Further extensions of Clifford circuits and their classical simulation complexities , 2015, Quantum Inf. Comput..

[18]  K. Kawarabayashi,et al.  A Coherent Ising Machine for MAX-CUT Problems: Performance Evaluation against Semidefinite Programming and Simulated Annealing , 2015, 1501.07030.

[19]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[20]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[21]  James C. Spall,et al.  Simultaneous Perturbation Stochastic Approximation , 2005 .

[22]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[23]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[24]  Emile H. L. Aarts,et al.  Combinatorial Optimization on a Boltzmann Machine , 1989, J. Parallel Distributed Comput..

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[26]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[27]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[28]  W. Marsden I and J , 2012 .

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .