Image quality enhancement using hybrid attention networks

[1]  In-So Kweon,et al.  CBAM: Convolutional Block Attention Module , 2018, ECCV.

[2]  Yun Fu,et al.  Image Super-Resolution Using Very Deep Residual Channel Attention Networks , 2018, ECCV.

[3]  Soumik Sarkar,et al.  LLNet: A deep autoencoder approach to natural low-light image enhancement , 2015, Pattern Recognit..

[4]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[5]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[6]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[7]  Syed Waqas Zamir,et al.  Learning Enriched Features for Real Image Restoration and Enhancement , 2020, ECCV.

[8]  Lifang Wu,et al.  DuGAN: An effective framework for underwater image enhancement , 2021, IET Image Process..

[9]  Michael Elad,et al.  On Single Image Scale-Up Using Sparse-Representations , 2010, Curves and Surfaces.

[10]  Raphaël Couturier,et al.  Image Denoising Using a Deep Encoder-Decoder Network with Skip Connections , 2018, ICONIP.

[11]  Kiyoharu Aizawa,et al.  Sketch-based manga retrieval using manga109 dataset , 2015, Multimedia Tools and Applications.

[12]  Fei Li,et al.  Generative adversarial network for low-light image enhancement , 2021, IET Image Process..

[13]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[14]  Kun Li,et al.  Low-light image enhancement based on Retinex decomposition and adaptive gamma correction , 2020, IET Image Process..

[15]  Kangfu Mei,et al.  Multi-scale Residual Network for Image Super-Resolution , 2018, ECCV.

[16]  H. Huang,et al.  Macro-pixel-wise CNN-based filtering for quality enhancement of light field images , 2020 .

[17]  Dongming Zhou,et al.  AMBCR: Low-light image enhancement via attention guided multi-branch construction and Retinex theory , 2021, IET Image Process..

[18]  Xiaojie Guo,et al.  Kindling the Darkness: A Practical Low-light Image Enhancer , 2019, ACM Multimedia.

[19]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[20]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[21]  Yunfang Zhu,et al.  Dynamic Residual Dense Network for Image Denoising , 2019, Sensors.

[22]  Yi Zhang,et al.  Three-dimensional Optical Coherence Tomography Image Denoising via Multi-input Fully-Convolutional Networks , 2019, Computers in biology and medicine.

[23]  Chen Change Loy,et al.  Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation , 2020, ECCV.

[24]  Ashish Kumar Bhandari,et al.  Image contrast enhancement with brightness preservation using an optimal gamma and logarithmic approach , 2020, IET Image Process..