Stochastic Order Relations and Lattices of Probability Measures

We study various partially ordered spaces of probability measures and we determine which of them are lattices. This has important consequences for optimization problems with stochastic dominance constraints. In particular we show that the space of probability measures on $\mathbb{R}$ is a lattice under most of the known partial orders, whereas the space of probability measures on $\mathbb{R}^d$ typically is not. Nevertheless, some subsets of this space, defined by imposing strong conditions on the dependence structure of the measures, are lattices.

[1]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[2]  Theodore P. Hill,et al.  On the Basic Representation Theorem for Convex Domination of Measures , 1998 .

[3]  H. Joe Multivariate models and dependence concepts , 1998 .

[4]  T. Sargent,et al.  Robust Permanent Income and Pricing , 1999 .

[5]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[6]  Lester E. Dubins,et al.  On the distribution of maxima of martingales , 1978 .

[7]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[8]  A simple proof of a theorem of blackwell & dubins on the maximum of a uniformly integrable martingale , 1988 .

[9]  Marco Scarsini,et al.  Multivariate stochastic dominance with fixed dependence structure , 1988 .

[10]  Theodore P. Hill,et al.  Fusions of a Probability Distribution , 1992 .

[11]  Marco Scarsini,et al.  Stochastic Comparison of Random Vectors with a Common Copula , 2001, Math. Oper. Res..

[12]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[13]  K. Mosler Multivariate Dispersion, Central Regions, and Depth , 2002 .

[14]  Philip H. Dybvig Distributional Analysis of Portfolio Choice , 1988 .

[15]  R. Nelsen An Introduction to Copulas , 1998 .

[16]  Qihe Tang,et al.  Solvency capital, risk measures and comonotonicity: a review , 2004 .

[17]  R. P. Kertz,et al.  Complete lattices of probability measures with applications to martingale theory , 2000 .

[18]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[19]  Marco Scarsini,et al.  Copulae of probability measures on product spaces , 1989 .

[20]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[21]  R. P. Kertz,et al.  Stochastic and convex orders and lattices of probability measures, with a martingale interpretation , 1992 .

[22]  Ludger Rüschendorf,et al.  Stochastically ordered distributions and monotonicity of the oc-function of sequential probability ratio tests , 1981 .

[23]  Roger B. Nelsen,et al.  Best-possible bounds on sets of bivariate distribution functions , 2004 .

[24]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[25]  Grace L. Yang ESTIMATION OF A BIOMETRIC FUNCTION , 1978 .

[26]  J. Shanthikumar,et al.  Dynamic multivariate mean residual life functions , 1991 .

[27]  Karl Mosler,et al.  Lift zonoids, random convex hulls and the variability of random vectors , 1998 .

[28]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[29]  E. Jouini,et al.  Efficient Trading Strategies in the Presence of Market Frictions , 1999 .

[30]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[31]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[32]  K. Mosler "Multivariate Dispersion, Central Regions, and Depth": The Lift Zonoid Approach , 2002 .