The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.

Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.

[1]  Erik Luijten,et al.  Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms , 2013, Nature.

[2]  T. Tolker-Nielsen,et al.  Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms , 2013, Antimicrobial Agents and Chemotherapy.

[3]  P. Howell,et al.  The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. , 2012, Environmental microbiology.

[4]  K. Sauer,et al.  The MerR-Like Transcriptional Regulator BrlR Contributes to Pseudomonas aeruginosa Biofilm Tolerance , 2012, Journal of bacteriology.

[5]  T. Mah,et al.  The Biofilm-Specific Antibiotic Resistance Gene ndvB Is Important for Expression of Ethanol Oxidation Genes in Pseudomonas aeruginosa Biofilms , 2012, Journal of bacteriology.

[6]  P. Stewart,et al.  Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population , 2012, Journal of bacteriology.

[7]  F. Lépine,et al.  Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria , 2011, Science.

[8]  James J. Collins,et al.  Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides , 2011, Nature.

[9]  R. Hancock,et al.  Involvement of an ATP-Dependent Protease, PA0779/AsrA, in Inducing Heat Shock in Response to Tobramycin in Pseudomonas aeruginosa , 2011, Antimicrobial Agents and Chemotherapy.

[10]  J. Esteban,et al.  Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin. , 2011, Enfermedades infecciosas y microbiologia clinica.

[11]  G. Wong,et al.  The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa , 2011, PLoS pathogens.

[12]  Anindita Das,et al.  Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. , 2010, The Journal of antimicrobial chemotherapy.

[13]  H. Ceri,et al.  Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening , 2010, Nature Protocols.

[14]  Pradeep K. Singh,et al.  Targeting a bacterial stress response to enhance antibiotic action , 2009, Proceedings of the National Academy of Sciences.

[15]  M. Parsek,et al.  Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production , 2009, Molecular microbiology.

[16]  H. Ceri,et al.  Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[17]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[18]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[19]  D. Wozniak,et al.  Role of polysaccharides in Pseudomonas aeruginosa biofilm development. , 2007, Current opinion in microbiology.

[20]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[21]  J. Hupp,et al.  Mucin–Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance , 2006, Molecular microbiology.

[22]  H. Schweizer,et al.  Molecular Basis of Azithromycin-Resistant Pseudomonas aeruginosa Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[23]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[24]  P. Stewart,et al.  Adaptive responses to antimicrobial agents in biofilms. , 2005, Environmental microbiology.

[25]  H. Ceri,et al.  Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. , 2005, Environmental microbiology.

[26]  D. Goldmann,et al.  Use of Confocal Microscopy To Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[27]  A. Filloux,et al.  The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. , 2005, Microbiology.

[28]  S. Molin,et al.  Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.

[29]  H. Ceri,et al.  Biofilm susceptibility to metal toxicity. , 2004, Environmental microbiology.

[30]  Philip S. Stewart,et al.  Stratified Growth in Pseudomonas aeruginosa Biofilms , 2004, Applied and Environmental Microbiology.

[31]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[32]  E. Greenberg,et al.  Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[33]  M. Parsek,et al.  Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.

[34]  Lotte Lambertsen,et al.  Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. , 2004, Environmental microbiology.

[35]  Garth D. Ehrlich,et al.  Oxygen Limitation Contributes to Antibiotic Tolerance of Pseudomonas aeruginosa in Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[36]  M. Hentzer,et al.  Dynamics and Spatial Distribution of β-Lactamase Expression in Pseudomonas aeruginosa Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[37]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[38]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Stewart,et al.  Role of Nutrient Limitation and Stationary-Phase Existence in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2003, Antimicrobial Agents and Chemotherapy.

[41]  Philip S. Stewart,et al.  Diffusion in Biofilms , 2003, Journal of bacteriology.

[42]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[43]  A. Matin,et al.  Tetracycline Rapidly Reaches All the Constituent Cells of Uropathogenic Escherichia coli Biofilms , 2002, Antimicrobial Agents and Chemotherapy.

[44]  P. Stewart,et al.  Penetration of Rifampin through Staphylococcus epidermidis Biofilms , 2002, Antimicrobial Agents and Chemotherapy.

[45]  G. Pugliese,et al.  Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials , 2002, Infection Control & Hospital Epidemiology.

[46]  J. Emerson,et al.  Serum and lower respiratory tract drug concentrations after tobramycin inhalation in young children with cystic fibrosis. , 2001, The Journal of pediatrics.

[47]  S. Molin,et al.  Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. , 2001, Microbiology.

[48]  R. Hancock,et al.  Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. , 2000, Microbiology.

[49]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[50]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.

[51]  S. Miller,et al.  Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. , 1999, Science.

[52]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[53]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[54]  P. Stewart,et al.  Spatial Physiological Heterogeneity inPseudomonas aeruginosa Biofilm Is Determined by Oxygen Availability , 1998, Applied and Environmental Microbiology.

[55]  L. Burrows,et al.  Three rhamnosyltransferases responsible for assembly of the A‐band D‐rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A‐band and B‐band lipopolysaccharide synthesis , 1998, Molecular microbiology.

[56]  N. Schiller,et al.  Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[57]  M. Sugai,et al.  Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. , 1997, Chemotherapy.

[58]  P. Stewart,et al.  Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics , 1997, Antimicrobial agents and chemotherapy.

[59]  J. Karlowsky,et al.  Aminoglycoside Adaptive Resistance , 1997, Pharmacotherapy.

[60]  S. Miller,et al.  Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. , 1997, Science.

[61]  J. Costerton,et al.  Pseudomonas aeruginosa biofilms are more susceptible to ciprofloxacin than to tobramycin. , 1996, International journal of antimicrobial agents.

[62]  D S Burgess,et al.  Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test , 1996, Antimicrobial agents and chemotherapy.

[63]  P. Thornley,et al.  Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. , 1996, The Journal of antimicrobial chemotherapy.

[64]  T. Beveridge,et al.  The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. , 1996, Microbiology.

[65]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[66]  P. Suci,et al.  Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms , 1994, Antimicrobial Agents and Chemotherapy.

[67]  H. Kumon,et al.  A Sandwich Cup Method for the Penetration Assay of Antimicrobial Agents through Pseudomonas Exopolysaccharides , 1994, Microbiology and immunology.

[68]  W. Dunne,et al.  Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm , 1993, Antimicrobial Agents and Chemotherapy.

[69]  T. Yokota,et al.  Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin , 1993, Antimicrobial Agents and Chemotherapy.

[70]  J. Costerton,et al.  Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin , 1992, Antimicrobial Agents and Chemotherapy.

[71]  N. Hodges,et al.  Protection of Pseudomonas aeruginosa against ciprofloxacin and beta-lactams by homologous alginate , 1991, Antimicrobial Agents and Chemotherapy.

[72]  C. Holmes,et al.  Resistance of bacterial biofilms to antibiotics. , 1989, The Journal of antimicrobial chemotherapy.

[73]  H L Walmsley,et al.  The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. , 1989, Journal of general microbiology.

[74]  D. Allison,et al.  Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? , 1988, The Journal of antimicrobial chemotherapy.

[75]  N. Hodges,et al.  Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. , 1988, The Journal of antimicrobial chemotherapy.

[76]  Nichols,et al.  Inhibition of tobramycin diffusion by binding to alginate , 1988, Antimicrobial Agents and Chemotherapy.

[77]  L. Garcia Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods , 2010 .

[78]  K. Lewis,et al.  Persister cells. , 2010, Annual review of microbiology.

[79]  J. Hahn,et al.  Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. , 2009, The Journal of antimicrobial chemotherapy.

[80]  G. O’Toole,et al.  Innate and induced resistance mechanisms of bacterial biofilms. , 2008, Current topics in microbiology and immunology.

[81]  H. Schweizer,et al.  mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.

[82]  K. Lewis,et al.  Persister cells and tolerance to antimicrobials. , 2004, FEMS microbiology letters.

[83]  L. Guohui Protection of Pseudomonas aeruginosa Outer Membrane protein Against Infection , 2003 .

[84]  P. Stewart,et al.  Mechanisms of antibiotic resistance in bacterial biofilms. , 2002, International journal of medical microbiology : IJMM.

[85]  B. Christensen,et al.  Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.

[86]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.