Adaptively Exploring Population Mobility Patterns in Flow Visualization

Thanks to the ubiquitous cell phone use, we have never been so close to uncover population mobility patterns in urban area. While some researches utilize cellphone call records to mine population patterns, few works aim to depict population movement in adaptively spatial and temporal representations, i.e., from a community, a district in the city over an hour, a day to a week. In this paper, we construct a system which deciphers, transforms, queries, and visualizes the records from the millions of users in a city. In particular, we design a data structure, namely MobiHash, which collects phone call records over base stations and indexes them by utilizing a Voronoi division of the urban space. MobiHash supports responsive data queries so that users can interactively retrieve trajectories reflecting population flows in areas of interest. Moreover, population movement is represented as vector fields to reduce visual clutter and occlusions. Because of sparse moving points, a novel radiation model is proposed to interpolate population passing zones. Case studies and experts’ feedback validate the utility and efficiency by comparing population moving patterns in different times by using our system.

[1]  Hujun Bao,et al.  A visual reasoning approach for data-driven transport assessment on urban roads , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[2]  Fan Zhang,et al.  Exploring human mobility with multi-source data at extremely large metropolitan scales , 2014, MobiCom.

[3]  Edwin Olson,et al.  On computing the average orientation of vectors and lines , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[6]  Marco Luca Sbodio,et al.  AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport , 2016, IEEE Trans. Vis. Comput. Graph..

[7]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[8]  Carlo Ratti,et al.  Does Urban Mobility Have a Daily Routine? Learning from the Aggregate Data of Mobile Networks , 2010 .

[9]  Jarke J. van Wijk,et al.  Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[10]  Margaret Martonosi,et al.  Human mobility modeling at metropolitan scales , 2012, MobiSys '12.

[11]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[12]  Jiawei Han,et al.  Inferring human mobility patterns from taxicab location traces , 2013, UbiComp.

[13]  Helwig Hauser,et al.  Interactive visualization of streaming data with Kernel Density Estimation , 2011, 2011 IEEE Pacific Visualization Symposium.

[14]  Andreas Kerren,et al.  MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering , 2016, IEEE Transactions on Visualization and Computer Graphics.

[15]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[16]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[17]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[18]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  W. Tobler A Model of Geographical Movement , 1981 .

[20]  Cláudio T. Silva,et al.  Vector Field k‐Means: Clustering Trajectories by Fitting Multiple Vector Fields , 2012, Comput. Graph. Forum.

[21]  Alexandre M. Bayen,et al.  Understanding Road Usage Patterns in Urban Areas , 2012, Scientific Reports.

[22]  Xiaoru Yuan,et al.  Visual Exploration of Sparse Traffic Trajectory Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[23]  Li Li,et al.  Visualization Analysis for Urban Human Traveling Behavior Based on Mobile Phone Data , 2015 .

[24]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[25]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[26]  Halldór Janetzko,et al.  SimpliFly: A Methodology for Simplification and Thematic Enhancement of Trajectories , 2015, IEEE Transactions on Visualization and Computer Graphics.

[27]  P. Hanrahan,et al.  Flow map layout , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[28]  Jing Yang,et al.  SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories , 2017, IEEE Transactions on Visualization and Computer Graphics.

[29]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[30]  Daniel A. Keim,et al.  Visual Analytics of Movement , 2013, Springer Berlin Heidelberg.

[31]  Xing Xie,et al.  Discovering regions of different functions in a city using human mobility and POIs , 2012, KDD.

[32]  Diansheng Guo,et al.  Flow Mapping and Multivariate Visualization of Large Spatial Interaction Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[33]  Fan Zhang,et al.  coRide: carpool service with a win-win fare model for large-scale taxicab networks , 2013, SenSys '13.

[34]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[35]  Xiaoru Yuan,et al.  Visual Traffic Jam Analysis Based on Trajectory Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[36]  D. Brillinger,et al.  An exploratory data analysis (EDA) of the paths of moving animals , 2004 .

[37]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  Fei Wang,et al.  Mobility Viewer: An Eulerian Approach for Studying Urban Crowd Flow , 2016, IEEE Transactions on Intelligent Transportation Systems.

[39]  Yuncai Liu,et al.  Automatic generation of road network map from massive GPS, vehicle trajectories , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[40]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .

[41]  Waldo R. Tobler,et al.  Experiments In Migration Mapping By Computer , 1987 .

[42]  Gennady L. Andrienko,et al.  Composite Density Maps for Multivariate Trajectories , 2011, IEEE Transactions on Visualization and Computer Graphics.

[43]  Jason Dykes,et al.  Visualizing the Dynamics of London's Bicycle-Hire Scheme , 2011, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[44]  Mário A. T. Figueiredo,et al.  Trajectory analysis in natural images using mixtures of vector fields , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[45]  H. Buchner The Grid File : An Adaptable , Symmetric Multikey File Structure , 2001 .

[46]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.