Performance Analysis of Free-Space Optical Systems in Gamma-Gamma Fading

Atmospheric turbulence induced fading is one of the main impairments affecting free-space optics (FSO). Gamma-gamma fading has become the dominant fading model for FSO links because of its excellent agreement with measurement data for a wide range of turbulence conditions. In this paper, we express the bit error rate of intensity modulated FSO with direct detection in single-input single-output and multiple-input multiple-output gamma-gamma fading channels as generalized infinite power series with respect to the signal-to- noise ratio. For fast numerical evaluation these power series are truncated to a finite number of terms and an upper bound for the associated approximation error is provided. Another contribution of this paper is the extension of the well-known RF concepts of diversity and combining gain to FSO and gamma-gamma fading.

[1]  Debbie Kedar,et al.  Urban optical wireless communication networks: the main challenges and possible solutions , 2004, IEEE Communications Magazine.

[2]  George K. Karagiannidis,et al.  FSO Links with Spatial Diversity over Strong Atmospheric Turbulence Channels , 2008, 2008 IEEE International Conference on Communications.

[3]  Maïté Brandt-Pearce,et al.  Optical repetition MIMO transmission with multipulse PPM , 2005, IEEE Journal on Selected Areas in Communications.

[4]  Wilfried Gappmair,et al.  Error performance of PPM/Poisson channels in turbulent atmosphere with gamma-gamma distribution , 2007 .

[5]  George K. Karagiannidis,et al.  Multihop Free-Space Optical Communications Over Strong Turbulence Channels , 2006, 2006 IEEE International Conference on Communications.

[6]  Murat Uysal,et al.  Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels , 2006, IEEE Transactions on Wireless Communications.

[7]  Etty J. Lee,et al.  Part 1: optical communication over the clear turbulent atmospheric channel using diversity , 2004, IEEE Journal on Selected Areas in Communications.

[8]  Ivan B. Djordjevic,et al.  Shannon capacities and error-correction codes for optical atmospheric turbulent channels , 2005 .

[9]  Xiaoli Sun,et al.  Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers , 1988, IEEE Trans. Commun..

[10]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..

[11]  Vincent W. S. Chan,et al.  Optical communication over the turbulent atmospheric channel using spatial diversity , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[12]  William G. Cowley,et al.  The Gaussian free space optical MIMO channel with Q-ary pulse position modulation , 2008, IEEE Transactions on Wireless Communications.

[13]  Mohamed-Slim Alouini,et al.  Digital Communication over Fading Channels: Simon/Digital Communications 2e , 2004 .

[14]  Kamran Kiasaleh,et al.  Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence , 2006, IEEE Transactions on Communications.

[15]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[16]  E. Leitgeb,et al.  Free-Space Optical Communication Using Subearrier Modulation in Gamma-Gamma Atmospheric Turbulence , 2007, 2007 9th International Conference on Transparent Optical Networks.

[17]  Jeffrey H. Shapiro,et al.  Wireless optical communications via diversity reception and optical preamplification , 2005, IEEE Transactions on Wireless Communications.

[18]  Marvin K. Simon,et al.  Alamouti-type space-time coding for free-space optical communication with direct detection , 2005, IEEE Transactions on Wireless Communications.

[19]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[20]  George K. Karagiannidis,et al.  BER Performance of FSO Links over Strong Atmospheric Turbulence Channels with Pointing Errors , 2008, IEEE Communications Letters.

[21]  Murat Uysal,et al.  Error rate performance of coded free-space optical links over strong turbulence channels , 2004, IEEE Communications Letters.

[22]  Lutz H.-J. Lampe,et al.  Reduced-Complexity Multiple-Symbol Detection for Free-Space Optical Communications , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[23]  L. Andrews,et al.  Laser Beam Scintillation with Applications , 2001 .

[24]  Albert Guillén i Fàbregas,et al.  Outage probability of the MIMO Gaussian free-space optical channel with PPM , 2008, 2008 IEEE International Symposium on Information Theory.

[25]  Maïté Brandt-Pearce,et al.  Free-space optical MIMO transmission with Q-ary PPM , 2005, IEEE Transactions on Communications.

[26]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[27]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[28]  Costas N. Georghiades Modulation and coding for throughput-efficient optical systems , 1994, IEEE Trans. Inf. Theory.

[29]  Georgios B. Giannakis,et al.  A simple and general parameterization quantifying performance in fading channels , 2003, IEEE Trans. Commun..

[30]  N. Letzepis,et al.  Outage Analysis in MIMO Free-Space Optical Channels with Pulse-Position Modulation , 2008 .

[31]  Albert Guillén i Fàbregas,et al.  Outage probability of the Gaussian MIMO free-space optical channel with PPM , 2009, IEEE Transactions on Communications.

[32]  John G. Proakis,et al.  Digital Communications , 1983 .

[33]  Ben He,et al.  Bit-Interleaved Coded Modulation for Hybrid RF/FSO Systems , 2009, 2009 IEEE International Conference on Communications.