Application of Bifurcation Analysis to Power Systems

Electric power systems are physically some of the largest and most complex nonlinear systems in the world. Bifurcations are rather mundane phenomena in power systems. The pioneer work on the local bifurcation analysis of power systems can be dated back to the 1970’s and earlier. Within the last 20 years or so nonlinear dynamical theory has become a subject of great interest to researchers and engineers in the power system community. Powerful computational tools for bifurcation analysis have been applied during this period to study important nonlinear problems arising in power systems, and in some cases, to relate this study to observed nonlinear phenomena in power systems. In this chapter, we will present an overview on the application of local bifurcation analysis and theory to (i) develop models explaining power system nonlinear behaviors and various power system instabilities such as voltage collapse and low-frequency oscillations, to (ii) develop a powerful global analysis tool based on continuation methods to trace power system quasi-steady-state behaviors due to load and generation variations in realistic power system models, and to (iii) develop performance indices for detecting and estimating local bifurcations of power systems. An overview on the extension of saddle-node bifurcation, Hopf bifurcation and limit-induced bifurcation to include the analysis of the system dynamics after the bifurcation is presented. In addition, the effects of un-modelled dynamics due to fast and slow variables on local bifurcations is presented.

[1]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[2]  S. Smale Differentiable dynamical systems , 1967 .

[3]  P. Cvitanović,et al.  Dynamical averaging in terms of periodic orbits , 1995 .

[4]  K. Hansen Pruning of orbits in four-disk and hyperbola billiards. , 1992, Chaos.

[5]  Grebogi,et al.  Efficient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  K. Iba,et al.  Calculation of critical loading condition with nose curve using homotopy continuation method , 1991 .

[7]  Antonio Politi,et al.  Symbolic encoding in symplectic maps , 1996 .

[8]  Andrew J. Korsak,et al.  On the Question of Uniqueness of Stable Load-Flow Solutions , 1972 .

[9]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[10]  Felix F. Wu,et al.  Chaos in a simple power system , 1993 .

[11]  L. Lu,et al.  Computing an optimum direction in control space to avoid stable node bifurcation and voltage collapse in electric power systems , 1992 .

[12]  J. Mather Variational construction of orbits of twist diffeomorphisms , 1991 .

[13]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[14]  Corron,et al.  Controlling chaos with simple limiters , 2000, Physical review letters.

[15]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[16]  Erik M. Bollt,et al.  Combinatorial Control of Global Dynamics in a Chaotic differential equation , 2001, Int. J. Bifurc. Chaos.

[17]  Claudio A. Canizares,et al.  Point of collapse and continuation methods for large AC/DC systems , 1993 .

[18]  P. Varaiya,et al.  Nonlinear oscillations in power systems , 1984 .

[19]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[20]  R. Fischl,et al.  Local bifurcation in power systems: theory, computation, and application , 1995, Proc. IEEE.

[21]  Grebogi,et al.  Higher-dimensional targeting. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Y. Lai,et al.  What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series , 2001 .

[23]  Y. Tayama,et al.  Voltage instability proximity index (VIPI) based on multiple load flow solutions in ill-conditioned power systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[24]  V. Ajjarapu,et al.  Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system , 1991, [Proceedings] Conference Papers 1991 Power Industry Computer Application Conference.

[25]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[26]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[27]  F. Galiana,et al.  Load flow feasibility and the voltage collapse problem , 1984, The 23rd IEEE Conference on Decision and Control.

[28]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[29]  Eyad H. Abed,et al.  DYNAMIC BIFURCATIONS IN A POWER SYSTEM MODEL EXHIBITING VOLTAGE COLLAPSE , 1993 .

[30]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[31]  H. Kantz,et al.  Homoclinic tangencies and non-normal Jacobians—effects of noise in nonhyperbolic chaotic systems , 1997 .

[32]  Thomas J. Overbye,et al.  Voltage security enhancement using energy based sensitivities , 1991 .

[33]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[34]  P. Kessel,et al.  Estimating the Voltage Stability of a Power System , 1986, IEEE Power Engineering Review.

[35]  A. Semlyen,et al.  Hopf bifurcations in torsional dynamics (turbine-generators) , 1992 .

[36]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[37]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[38]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[39]  T. Van Cutsem Voltage instability: phenomena, countermeasures, and analysis methods , 2000, Proceedings of the IEEE.

[40]  E. Kostelich,et al.  Targeting and Control of Chaos , 1997 .

[41]  Venkataramana Ajjarapu,et al.  The continuation power flow: a tool for steady state voltage stability analysis , 1991 .

[42]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[43]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[44]  V. A. Venikov,et al.  Estimation of electrical power system steady-state stability in load flow calculations , 1975, IEEE Transactions on Power Apparatus and Systems.

[45]  Edward Ott,et al.  Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. , 1997, Chaos.

[46]  Thomas J. Overbye,et al.  Q-V curve interpretations of energy measures for voltage security , 1994 .

[47]  Erik M. Bollt Ba and Ms and CONTROLLING THE CHAOTIC LOGISTIC MAP , 1997 .

[48]  G. Basti,et al.  Adaptive Recognition of a Chaotic Dynamics , 1994 .

[49]  Alexander J. Flueck,et al.  A novel method of look-ahead contingency ranking for saddle-node bifurcation , 1997, Proceedings of the 20th International Conference on Power Industry Computer Applications.

[50]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[51]  Pravin Varaiya,et al.  Degenerate Hopf bifurcations in power systems , 1988 .

[52]  Grebogi,et al.  Controlling Hamiltonian chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Heinz Schättler,et al.  Homoclinic orbits and the persistence of the saddle connection bifurcation in the large power system , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[54]  Venkataramana Ajjarapu,et al.  Identification of voltage collapse through direct equilibrium tracing , 2000 .

[55]  G. C. Ejebe,et al.  Methods for contingency screening and ranking for voltage stability analysis of power systems , 1995 .

[56]  Ronald J. Gould,et al.  Graph theory , 1988 .

[57]  Y. Kataoka,et al.  An approach for the regularization of a power flow solution around the maximum loading point , 1992 .

[58]  J.-C. Chow,et al.  A framework to predict voltage collapse in power systems , 1988 .

[59]  Alexander J. Flueck,et al.  A new continuation power flow tool for investigating the nonlinear effects of transmission branch parameter variations , 2000 .

[60]  Hsiao-Dong Chiang,et al.  CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations , 1995 .

[61]  J. Baillieul,et al.  Geometric critical point analysis of lossless power system models , 1982 .

[62]  Hsiao-Dong Chiang,et al.  Toward a practical performance index for predicting voltage collapse in electric power systems , 1995 .

[63]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[64]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[65]  I. Dobson Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems , 1992 .

[66]  D. Hill,et al.  Computation of Bifurcation Boundaries for Power Systems: a New , 2000 .

[67]  Ian Dobson,et al.  Towards a theory of voltage collapse in electric power systems , 1989 .

[68]  A.C.Z. de Souza,et al.  Comparison of performance indices for detection of proximity to voltage collapse , 1996 .

[69]  J. Yorke,et al.  Lorenz cross sections of the chaotic attractor of the double rotor , 1987 .

[70]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[71]  H. Chiang,et al.  Bifurcations and chaos in electric power systems: Numerical studies , 1994 .

[72]  S. Boccaletti,et al.  Adaptive targeting of chaos , 1997 .

[73]  F. Alvarado,et al.  Point of collapse methods applied to AC/DC power systems , 1992 .

[74]  B. Jeyasurya,et al.  Contingency ranking for on-line voltage stability assessment , 2000 .

[75]  H. Chiang,et al.  Persistence of the saddle-node bifurcation for nonlinear systems with slow unmodeled dynamics , 1993 .

[76]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[77]  Pravin Varaiya,et al.  Bifurcation and chaos in power systems: A survey , 1992 .

[78]  H. Schättler,et al.  Dynamics of large constrained nonlinear systems-a taxonomy theory [power system stability] , 1995, Proc. IEEE.

[79]  H. Schättler,et al.  Local bifurcations and feasibility regions in differential-algebraic systems , 1995, IEEE Trans. Autom. Control..

[80]  D. Hill,et al.  Global control with application to bifurcating power systems , 2000 .

[81]  Vijay Vittal,et al.  Power System Transient Stability Analysis Using the Transient Energy Function Method , 1991 .

[82]  Leon Y. Bahar,et al.  Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse , 1986 .

[83]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[84]  J. P. Wilson,et al.  Bogdanov-Takens bifurcation points and Sil'nikov homoclinicity in a simple power-system model of voltage collapse , 2002 .

[85]  M. A. Pai,et al.  Voltage collapse analysis with reactive generation and voltage dependent load constraints , 1989 .

[86]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[87]  Hiroshi Sasaki,et al.  On voltage stability from the viewpoint of singular perturbation theory , 1994 .

[88]  Hayes,et al.  Experimental control of chaos for communication. , 1994, Physical review letters.

[89]  H. Chiang,et al.  A more efficient formulation for computation of the maximum loading points in electric power systems , 1995 .

[90]  A. Kurita,et al.  The power system failure on July 23, 1987 in Tokyo , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[91]  I. Dobson,et al.  New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse , 1993 .

[92]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[93]  N. Yorino,et al.  A method to approximate a closest loadability limit using multiple load flow solutions , 1997 .

[94]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[95]  Robert J. Thomas,et al.  A posturing strategy against voltage instabilities in electric power systems , 1988 .

[96]  Erik M. Bollt,et al.  Review of Chaos Communication by Feedback Control of Symbolic Dynamics , 2003, Int. J. Bifurc. Chaos.

[97]  Felix F. Wu,et al.  Bifurcation, chaos, and voltage collapse in power systems , 1995, Proc. IEEE.

[98]  Jerome Meisel,et al.  The Generation of Quasi Steady-State Load-Flow Trajectories and Multiple Singular Point Solutions , 1971 .

[99]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[100]  Alexander J. Flueck,et al.  Investigating the installed real power transfer capability of a large scale power system under a proposed multiarea interchange schedule using CPFLOW , 1996 .

[101]  Erik M. Bollt,et al.  Communication with chemical chaos in the presence of noise. , 1998, Chaos.

[102]  Y. Tamura,et al.  Relationship Between Voltage Instability and Multiple Load FLow Solutions in Electric Power Systems , 1983, IEEE Transactions on Power Apparatus and Systems.

[103]  F. T. Arecchi,et al.  Adaptive recognition and control of chaos , 1996 .

[104]  Eric J. Kostelich,et al.  Optimal targeting of chaos , 1998 .

[105]  J. Meiss,et al.  Targeting chaotic orbits to the Moon through recurrence , 1995 .

[106]  Grebogi,et al.  Using chaos to direct orbits to targets in systems describable by a one-dimensional map. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[107]  Alexander J. Flueck,et al.  Look-ahead voltage and load margin contingency selection functions for large-scale power systems , 1997 .

[108]  P. Grassberger,et al.  On the symbolic dynamics of the Henon map , 1989 .

[109]  R. Bowen,et al.  MARKOV PARTITIONS FOR AXIOM A DIFFEOMORPHISMS. , 1970 .

[110]  Carlos J. Tavora,et al.  Stability Analysis of Power Systems , 1972 .

[111]  Carlos J. Tavora,et al.  Equilibrium Analysis of Power Systems , 1972 .

[112]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[113]  Ian Dobson,et al.  Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered , 1992 .

[114]  Venkataramana Ajjarapu,et al.  A practical minimum load shedding strategy to mitigate voltage collapse , 1998 .