Journal of Fourier Analysis and Applications
暂无分享,去创建一个
[1] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[2] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[3] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[4] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[5] C. Micchelli,et al. Stationary Subdivision , 1991 .
[6] I. Daubechies,et al. Two-scale difference equations I: existence and global regularity of solutions , 1991 .
[7] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[8] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[9] D. Hardin,et al. Multiresolution analyses based on fractal functions , 1992 .
[10] DaubechiesIngrid. Orthonormal bases of compactly supported wavelets II , 1993 .
[11] G. Strang,et al. Orthogonal multiwavelets with vanishing moments , 1994 .
[12] L. Hervé. Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .
[13] D. Hardin,et al. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .
[14] S. L. Lee,et al. WAVELETS OF MULTIPLICITY r , 1994 .
[15] Gilbert Strang,et al. Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..
[16] David K. Ruch,et al. On the Support Properties of Scaling Vectors , 1996 .
[17] George C. Donovan,et al. Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .
[18] Generalized self-similarity applied to matrix refinement equations , 1996 .
[19] G. Strang,et al. Approximation by translates of refinable functions , 1996 .
[20] I. Daubechies,et al. Regularity of refinable function vectors , 1997 .