Journal of Fourier Analysis and Applications

Matrix refinement equations are functional equations of the form f(x) =

[1]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[2]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[3]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[4]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[5]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[6]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[9]  D. Hardin,et al.  Multiresolution analyses based on fractal functions , 1992 .

[10]  DaubechiesIngrid Orthonormal bases of compactly supported wavelets II , 1993 .

[11]  G. Strang,et al.  Orthogonal multiwavelets with vanishing moments , 1994 .

[12]  L. Hervé Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .

[13]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[14]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[15]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[16]  David K. Ruch,et al.  On the Support Properties of Scaling Vectors , 1996 .

[17]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[18]  Generalized self-similarity applied to matrix refinement equations , 1996 .

[19]  G. Strang,et al.  Approximation by translates of refinable functions , 1996 .

[20]  I. Daubechies,et al.  Regularity of refinable function vectors , 1997 .