Off diagonal short time asymptotics for fundamental solution of diffusion equation

[1]  L. Hörmander Fourier integral operators. I , 1995 .

[2]  Stanislav Molchanov,et al.  DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .

[3]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[4]  Joseph B. Keller,et al.  Short time asymptotic expansions of solutions of parabolic equations , 1972 .

[5]  Srinivasa Varadhan,et al.  Diffusion processes in a small time interval , 1967 .

[6]  Jack K. Cohen,et al.  A Ray Method for the Asymptotic Solution of the Diffusion Equation , 1967 .

[7]  R. Bishop,et al.  Geometry of Manifolds , 1964 .

[8]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[9]  H. Weyl Elementary Algebraic Treatment of the Quantum Mechanical Symmetry Problem , 1949, Canadian Journal of Mathematics.

[10]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[11]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[12]  Louis Boutet de Monvel,et al.  Propagation des singularites des solutions d’equations analogues a l’equation de Schrödinger , 1975 .

[13]  R. Hersh The method of transmutations , 1975 .

[14]  Y. C. Verdière Propriétés asymptotiques de l'équation de la chaleur sur une variété compacte [d'après P. Gilkey] , 1974 .

[15]  Michael E. Taylor,et al.  Penetrations into Shadow Regions and Unique Continuation Properties in Hyperbolic Mixed Problems , 1972 .

[16]  V. Buslaev Continuum Integrals and the Asymptotic Behavior of the Solutions of Parabolic Equations as t→0. Applications to Diffraction , 1968 .