Estimation of the extreme-value index and generalized quantile plots

replacing the Zipf plot by a generalized quantile plot. We make an asymptotic comparison of our estimator with the moment estimator and with the maximum likelihood estimator. A case study illustrates our findings. Finally, we offer a regression model that generalizes the ERM in that it allows the construction of bias-reduced estimators. Moreover, the model provides an adaptive selection rule for the number of extremes needed in several of the existing estimators.

[1]  A. Hadi,et al.  Fitting the Generalized Pareto Distribution to Data , 1997 .

[2]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[3]  Tatyana S. Turova,et al.  Weak Convergence of the Hill Estimator Process , 1994 .

[4]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[5]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[6]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[7]  Jan Beirlant,et al.  On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .

[8]  Josef Steinebach,et al.  ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .

[9]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[10]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[11]  Alex Luiz Ferreira,et al.  Optimal asymptotic estimation of small exceedance probabilities , 2002 .

[12]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[13]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[14]  Laurens de Haan,et al.  On maximum likelihood estimation of the extreme value index , 2004, math/0407062.

[15]  J. Doob Stochastic processes , 1953 .

[16]  Laurens de Haan,et al.  On the estimation of high quantiles , 1993 .

[17]  L. Haan,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[18]  Piet Groeneboom,et al.  Kernel-type estimators for the extreme value index , 2003 .

[19]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[20]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[21]  S. Resnick,et al.  The qq-estimator and heavy tails , 1996 .

[22]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[23]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[24]  Sidney Resnick,et al.  Smoothing the Hill Estimator , 1997, Advances in Applied Probability.

[25]  S. Csörgo,et al.  Estimating the tail index , 1998 .

[26]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[27]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[28]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[29]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[30]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .