A recursive ℓ∞-trust-region method for bound-constrained nonlinear optimization

A recursive trust-region method is introduced for the solution of bound-cons-trained nonlinear nonconvex optimization problems for which a hierarchy of descriptions exists. Typical cases are infinite-dimensional problems for which the levels of the hierarchy correspond to discretization levels, from coarse to fine. The new method uses the infinity norm to define the shape of the trust region, which is well adapted to the handling of bounds and also to the use of successive coordinate minimization as a smoothing technique. Numerical tests motivate a theoretical analysis showing convergence to first-order critical points irrespective of the starting point.

[1]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[2]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[3]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[4]  E. Gelman,et al.  On multilevel iterative methods for optimization problems , 1990, Math. Program..

[5]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[6]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[7]  S. Nash A multigrid approach to discretized optimization problems , 2000 .

[8]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[9]  Stephen G. Nash,et al.  Practical Aspects of Multiscale Optimization Methods for VLSICAD , 2003 .

[10]  Charles A. Bouman,et al.  A general framework for nonlinear multigrid inversion , 2005, IEEE Transactions on Image Processing.

[11]  Serge,et al.  SECOND-ORDER CONVERGENCE PROPERTIES OF TRUST-REGION METHODS USING INCOMPLETE CURVATURE INFORMATION, WITH AN APPLICATION TO MULTIGRID OPTIMIZATION * , 2006 .

[12]  Karl Kunisch,et al.  A globalization strategy for the multigrid solution of elliptic optimal control problems , 2006, Optim. Methods Softw..

[13]  Serge Gratton,et al.  Recursive Trust-Region Methods for Multiscale Nonlinear Optimization , 2008, SIAM J. Optim..